Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

A green approach to the synthesis of graphene nanosheets.

A green approach to the synthesis of graphene nanosheets. Graphene can be viewed as an individual atomic plane extracted from graphite, as unrolled single-walled carbon nanotube or as an extended flat fullerene molecule. In this paper, a facile approach to the synthesis of high quality graphene nanosheets in large scale through electrochemical reduction of exfoliated graphite oxide precursor at cathodic potentials (completely reduced potential: -1.5 V) is reported. This method is green and fast, and will not result in contamination of the reduced material. The electrochemically reduced graphene nanosheets have been carefully characterized by spectroscopic and electrochemical techniques in comparison to the chemically reduced graphene-based product. Particularly, FTIR spectra indicate that a variety of the oxygen-containing functional groups have been thoroughly removed from the graphite oxide plane via electrochemical reduction. The chemically converted materials are not expected to exhibit graphene's electronic properties because of residual defects. Indeed, the high quality graphene accelerates the electron transfer rate in dopamine electrochemistry (DeltaE(p) is as small as 44 mV which is much smaller than that on a glassy carbon electrode). This approach opens up the possibility for assembling graphene biocomposites for electrocatalysis and the construction of biosensors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACS Nano Pubmed

A green approach to the synthesis of graphene nanosheets.

ACS Nano , Volume 3 (9): -2643 – Dec 30, 2009

A green approach to the synthesis of graphene nanosheets.


Abstract

Graphene can be viewed as an individual atomic plane extracted from graphite, as unrolled single-walled carbon nanotube or as an extended flat fullerene molecule. In this paper, a facile approach to the synthesis of high quality graphene nanosheets in large scale through electrochemical reduction of exfoliated graphite oxide precursor at cathodic potentials (completely reduced potential: -1.5 V) is reported. This method is green and fast, and will not result in contamination of the reduced material. The electrochemically reduced graphene nanosheets have been carefully characterized by spectroscopic and electrochemical techniques in comparison to the chemically reduced graphene-based product. Particularly, FTIR spectra indicate that a variety of the oxygen-containing functional groups have been thoroughly removed from the graphite oxide plane via electrochemical reduction. The chemically converted materials are not expected to exhibit graphene's electronic properties because of residual defects. Indeed, the high quality graphene accelerates the electron transfer rate in dopamine electrochemistry (DeltaE(p) is as small as 44 mV which is much smaller than that on a glassy carbon electrode). This approach opens up the possibility for assembling graphene biocomposites for electrocatalysis and the construction of biosensors.

Loading next page...
 
/lp/pubmed/a-green-approach-to-the-synthesis-of-graphene-nanosheets-c0Rx3ig6xM

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1936-0851
DOI
10.1021/nn900227d
pmid
19691285

Abstract

Graphene can be viewed as an individual atomic plane extracted from graphite, as unrolled single-walled carbon nanotube or as an extended flat fullerene molecule. In this paper, a facile approach to the synthesis of high quality graphene nanosheets in large scale through electrochemical reduction of exfoliated graphite oxide precursor at cathodic potentials (completely reduced potential: -1.5 V) is reported. This method is green and fast, and will not result in contamination of the reduced material. The electrochemically reduced graphene nanosheets have been carefully characterized by spectroscopic and electrochemical techniques in comparison to the chemically reduced graphene-based product. Particularly, FTIR spectra indicate that a variety of the oxygen-containing functional groups have been thoroughly removed from the graphite oxide plane via electrochemical reduction. The chemically converted materials are not expected to exhibit graphene's electronic properties because of residual defects. Indeed, the high quality graphene accelerates the electron transfer rate in dopamine electrochemistry (DeltaE(p) is as small as 44 mV which is much smaller than that on a glassy carbon electrode). This approach opens up the possibility for assembling graphene biocomposites for electrocatalysis and the construction of biosensors.

Journal

ACS NanoPubmed

Published: Dec 30, 2009

There are no references for this article.