Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

P2-Na x VO2 system as electrodes for batteries and electron-correlated materials

P2-Na x VO2 system as electrodes for batteries and electron-correlated materials Layered oxides are the subject of intense studies either for their properties as electrode materials for high-energy batteries or for their original physical properties due to the strong electronic correlations resulting from their unique structure. Here we present the detailed phase diagram of the layered P2-Na x VO2 system determined from electrochemical intercalation/deintercalation in sodium batteries and in situ X-ray diffraction experiments. It shows that four main single-phase domains exist within the 0.5≤x≤0.9 range. During the sodium deintercalation (intercalation), they differ from one another in the sodium/vacancy ordering between the VO2 slabs, which leads to commensurable or incommensurable superstructures. The electrochemical curve reveals that three peculiar compositions exhibit special structures for x = 1/2, 5/8 and 2/3. The detailed structural characterization of the P2-Na1/2VO2 phase shows that the Na+ ions are perfectly ordered to minimize Na+/Na+ electrostatic repulsions. Within the VO2 layers, the vanadium ions form pseudo-trimers with very short V–V distances (two at 2.581 Å and one at 2.687 Å). This original distribution leads to a peculiar magnetic behaviour with a low magnetic susceptibility and an unexpected low Curie constant. This phase also presents a first-order structural transition above room temperature accompanied by magnetic and electronic transitions. This work opens up a new research domain in the field of strongly electron-correlated materials. From the electrochemical point of view this system may be at the origin of an entire material family optimized by cationic substitutions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Materials Springer Journals

P2-Na x VO2 system as electrodes for batteries and electron-correlated materials

Loading next page...
 
/lp/springer-journals/p2-na-x-vo2-system-as-electrodes-for-batteries-and-electron-correlated-chVImPmS1d

References (52)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Nature Publishing Group
Subject
Materials Science; Materials Science, general; Optical and Electronic Materials; Biomaterials; Nanotechnology; Condensed Matter Physics
ISSN
1476-1122
eISSN
1476-4660
DOI
10.1038/nmat3478
Publisher site
See Article on Publisher Site

Abstract

Layered oxides are the subject of intense studies either for their properties as electrode materials for high-energy batteries or for their original physical properties due to the strong electronic correlations resulting from their unique structure. Here we present the detailed phase diagram of the layered P2-Na x VO2 system determined from electrochemical intercalation/deintercalation in sodium batteries and in situ X-ray diffraction experiments. It shows that four main single-phase domains exist within the 0.5≤x≤0.9 range. During the sodium deintercalation (intercalation), they differ from one another in the sodium/vacancy ordering between the VO2 slabs, which leads to commensurable or incommensurable superstructures. The electrochemical curve reveals that three peculiar compositions exhibit special structures for x = 1/2, 5/8 and 2/3. The detailed structural characterization of the P2-Na1/2VO2 phase shows that the Na+ ions are perfectly ordered to minimize Na+/Na+ electrostatic repulsions. Within the VO2 layers, the vanadium ions form pseudo-trimers with very short V–V distances (two at 2.581 Å and one at 2.687 Å). This original distribution leads to a peculiar magnetic behaviour with a low magnetic susceptibility and an unexpected low Curie constant. This phase also presents a first-order structural transition above room temperature accompanied by magnetic and electronic transitions. This work opens up a new research domain in the field of strongly electron-correlated materials. From the electrochemical point of view this system may be at the origin of an entire material family optimized by cationic substitutions.

Journal

Nature MaterialsSpringer Journals

Published: Nov 11, 2012

There are no references for this article.