Access the full text.
Sign up today, get DeepDyve free for 14 days.
G Villeneuve (1972)
Contribution to the study of the metal-insulator transition in the V1−x Nb x O2 system: I- crystallographic and transport propertiesJ. Phys. Chem. Solids, 33
Z. Ouyang, N. Xia, S. Sheng, Jian Chen, Z. Xia, G. Rao, Xiaohong Zheng (2011)
Structural distortion and orbital ordering in the triangular-lattice antiferromagnet NaVO2 from first principlesPhysical Review B, 83
J. Goodenough (1963)
Magnetism and the chemical bond
M Schindler, FC Hawthorne, WH Baur (2000)
Crystal chemistry aspect of vanadium: Polyhedral geometries, characteristic bond valences, and polymerization of (VO n ) polyhedraChem. Mater., 12
D Hamani, M Ati, JM Tarascon, P Rozier (2011)
Na x VO2 as possible electrode for Na-ion batteriesElectochem. Commun., 13
E. Cuno, H. Müller-Buschbaum (1988)
Zur Verbindungsbildung MO: M2O3. Zur Kenntnis von BaCr2O4Zeitschrift für anorganische und allgemeine Chemie, 564
A. Williams, J. Attfield, M. Foo, L. Viciu, R. Cava (2006)
High-resolution neutron diffraction study of possible charge ordering in Na0.5CoO2Physical Review B, 73
D. Mcwhan, J. Remeika, T. Rice, W. Brinkman, J. Maita, A. Menth (1971)
Electronic Specific Heat of Metallic Ti-Doped V 2 O 3Physical Review Letters, 27
K. Kobayashi, K. Kosuge, S. Kachi (1969)
Electric and magnetic properties of LixV2−xO2Materials Research Bulletin, 4
R. Berthelot, D. Carlier, D. Carlier, C. Delmas, C. Delmas (2011)
Electrochemical investigation of the P2–NaxCoO2 phase diagram.Nature materials, 10 1
T. Jia, Guoren Zhang, Z. Zeng, H. Lin (2009)
Orbitally relieved magnetic frustration in NaVO2Physical Review B, 80
H. Pen, L. Tjeng, E. Pellegrin, F. Groot, G. Sawatzky, M. Veenendaal, C. Chen (1997)
Phase transition in LiVO2 studied by near-edge x-ray-absorption spectroscopyPhysical Review B, 55
M. Barker, A. Hooper (1973)
Reactions of sodium oxide with the oxides VO2, V2O3, VO, and vanadium metalJournal of The Chemical Society-dalton Transactions
H Pausch, HK Müller-Buschbaum (1974)
A new crystal structure of the general formula Me2+M2 3+O4: SrCr2O4Z. Anorg. Allg. Chem., 405
K Imai, H Sawa, M Koike, M Hasegawa, H Takei (1995)
Superstructure analyses on single crystals of Li0.8VO2J. Solid State Chem., 114
V Petricek, M Dusek, L Palatinus (2006)
The Crystallographic Computing System
M Lee (2006)
Large enhancement of the thermopower in Na x CoO2 at high Na dopingNature Mater., 5
M. Schindler, F. Hawthorne, W. Baur (2000)
Crystal Chemical Aspects of Vanadium: Polyhedral Geometries, Characteristic Bond Valences, and Polymerization of (VOn) PolyhedraChemistry of Materials, 12
M. Barker, A. Hooper (1973)
Preparation and X-ray powder diffraction patterns of the sodium vanadates NaVO3, Na4V2O7, and Na3VO4Journal of The Chemical Society-dalton Transactions
E Cuno, HK Müller-Buschbaum (1988)
About a compound formation MO:M2O3. On BaCr2O4Z. Anorg. Allg. Chem., 564
C. Delmas, J. Braconnier, C. Fouassier, P. Hagenmuller (1981)
Electrochemical intercalation of sodium in NaxCoO2 bronzesSolid State Ionics
P. Cox (1992)
Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties
H. Pausch, H. Müller-Buschbaum (1974)
Ein neuer Bautyp zur Formel Me2+M23+O4 Die Kristallstruktur von SrCr2O4Zeitschrift für anorganische und allgemeine Chemie, 405
C. Didier, M. Guignard, C. Denage, Olivier Szajwaj, S. Ito, I. Saadoune, J. Darriet, C. Delmas (2011)
Electrochemical Na-Deintercalation from NaVO2Electrochemical and Solid State Letters, 14
J. Feinleib, W. Paul (1967)
Semiconductor-To-Metal Transition inV2O3Physical Review, 155
H. Zandbergen, M. Foo, Qiang Xu, V. Kumar, R. Cava (2004)
Sodium ion ordering in NaxCoO2: Electron diffraction studyPhysical Review B, 70
Minhyea Lee, L. Viciu, Lu Li, Yayu Wang, Yayu Wang, M. Foo, M. Foo, S. Watauchi, R. Pascal, R. Cava, N. Ong (2006)
Large enhancement of the thermopower in NaxCoO2 at high Na dopingNature Materials, 5
K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. Dilanian, T. Sasaki (2003)
Superconductivity in two-dimensional CoO2 layersNature, 422
I. Brown (2002)
The Chemical Bond in Inorganic Chemistry: The Bond Valence Model
H. Pausch, H. Müller-Buschbaum (1974)
Die Kristallstruktur von α‐CaCr2O4Zeitschrift für anorganische und allgemeine Chemie, 405
H Zandbergen, M Foo, Q Xu, V Kumar, RJ Cava (2004)
Sodium ion ordering in Na x CoO2: Electron diffraction studyPhys. Rev. B, 70
Q. Huang, M. Foo, J. Lynn, H. Zandbergen, G. Lawes, Yayu Wang, B Toby, A Ramirez, N. Ong, R. Cava (2004)
Low temperature phase transitions and crystal structure of Na0.5CoO2Journal of Physics: Condensed Matter, 16
W. Paul (1970)
The present position of theory and experiment for VO2Materials Research Bulletin, 5
S. Dutton, E. Climent-Pascual, Peter Stephens, Jason Hodges, A. Huq, Collin Broholm, R. Cava (2011)
Helical magnetism and structural anomalies in triangular lattice α-SrCr2O4Journal of Physics: Condensed Matter, 23
T. McQueen, P. Stephens, Q. Huang, T. Klimczuk, F. Ronning, R. Cava (2008)
Successive orbital ordering transitions in NaVO2.Physical review letters, 101 16
C Delmas, JJ Braconnier, C Fouassier, P Hagenmuller (1981)
Electrochemical intercalation of sodium in Na x CoO2 bronzesSolid State Ion., 3-4
G. Villeneuve, A. Bordet, A. Casalot, J. Pouget, H. Launois, P. Lederer (1972)
Contribution to the study of the metal-insulator transition in the V1−xNbxO2 system: I — crystallographic and transport propertiesJournal of Physics and Chemistry of Solids, 33
ID Brown (2002)
The Chemical Bond in Inorganic Chemistry
L. Chapon, P. Manuel, F. Damay, P. Tolédano, V. Hardy, C. Martin (2010)
Helical magnetic state in the distorted triangular lattice ofα-CaCr2O4Physical Review B, 83
M. Onoda (2008)
Geometrically frustrated triangular lattice system NaxVO2: superparamagnetism in x = 1 and trimerization in x≈0.7Journal of Physics: Condensed Matter, 20
Katsuhiro Imai, H. Sawa, M. Koike, M. Hasegawa, H. Takei (1995)
Superstructure Analyses on Single Crystals of Li0.8VO2IEEE Journal of Solid-state Circuits, 114
R Berthelot, D Carlier, C Delmas (2011)
Electrochemical investigation of the P2-Na x CoO2 phase diagramNature Mater., 10
M Onoda (2008)
Geometrically frustrated triangular lattice system Na x VO2: superparamagnetism in x = 1 and trimerization in x = 0.7J. Phys. Condens. Matter, 20
B. Chamberland, S. Porter (1988)
A study on the preparation and physical property determination of NaVO2Journal of Solid State Chemistry, 73
K Kobayashi, K Kosuge, S Kachi (1969)
Electric and magnetic properties of Li x V2−x O2Mater. Res. Bull., 4
David Hamani, M. Ati, J. Tarascon, P. Rozier (2011)
NaxVO2 as possible electrode for Na-ion batteriesElectrochemistry Communications, 13
I. Terasaki, Y. Sasago, K. Uchinokura (1997)
Large thermoelectric power in NaCo 2 O 4 single crystalsPhysical Review B, 56
H Pausch, HK Müller-Buschbaum (1974)
The crystal structure of α-CaCr2O4Z. Anorg. Allg. Chem., 405
Olivier Szajwaj, E. Gaudin, F. Weill, J. Darriet, C. Delmas (2009)
Investigation of the new P'3-Na0.60VO2 phase: structural and physical properties.Inorganic chemistry, 48 19
J. Bérar, G. Baldinozzi (1993)
Modeling of line-shape asymmetry in powder diffractionJournal of Applied Crystallography, 26
P. Thompson, D. Cox, J. Hastings (1987)
Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3Journal of Applied Crystallography, 20
C. Delmas, C. Fouassier, P. Hagenmuller (1980)
Structural classification and properties of the layered oxidesPhysica B-condensed Matter, 99
Layered oxides are the subject of intense studies either for their properties as electrode materials for high-energy batteries or for their original physical properties due to the strong electronic correlations resulting from their unique structure. Here we present the detailed phase diagram of the layered P2-Na x VO2 system determined from electrochemical intercalation/deintercalation in sodium batteries and in situ X-ray diffraction experiments. It shows that four main single-phase domains exist within the 0.5≤x≤0.9 range. During the sodium deintercalation (intercalation), they differ from one another in the sodium/vacancy ordering between the VO2 slabs, which leads to commensurable or incommensurable superstructures. The electrochemical curve reveals that three peculiar compositions exhibit special structures for x = 1/2, 5/8 and 2/3. The detailed structural characterization of the P2-Na1/2VO2 phase shows that the Na+ ions are perfectly ordered to minimize Na+/Na+ electrostatic repulsions. Within the VO2 layers, the vanadium ions form pseudo-trimers with very short V–V distances (two at 2.581 Å and one at 2.687 Å). This original distribution leads to a peculiar magnetic behaviour with a low magnetic susceptibility and an unexpected low Curie constant. This phase also presents a first-order structural transition above room temperature accompanied by magnetic and electronic transitions. This work opens up a new research domain in the field of strongly electron-correlated materials. From the electrochemical point of view this system may be at the origin of an entire material family optimized by cationic substitutions.
Nature Materials – Springer Journals
Published: Nov 11, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.