Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Stochastic description of complex and simple spike firing in cerebellar Purkinje cells

Stochastic description of complex and simple spike firing in cerebellar Purkinje cells Cerebellar Purkinje cells generate two distinct types of spikes, complex and simple spikes, both of which have conventionally been considered to be highly irregular, suggestive of certain types of stochastic processes as underlying mechanisms. Interestingly, however, the interspike interval structures of complex spikes have not been carefully studied so far. We showed in a previous study that simple spike trains are actually composed of regular patterns and single interspike intervals, a mixture that could not be explained by a simple rate‐modulated Poisson process. In the present study, we systematically investigated the interspike interval structures of separated complex and simple spike trains recorded in anaesthetized rats, and derived an appropriate stochastic model. We found that: (i) complex spike trains do not exhibit any serial correlations, so they can effectively be generated by a renewal process, (ii) the distribution of intervals between complex spikes exhibits two narrow bands, possibly caused by two oscillatory bands (0.5–1 and 4–8 Hz) in the input to Purkinje cells and (iii) the regularity of regular patterns and single interspike intervals in simple spike trains can be represented by gamma processes of orders, which themselves are drawn from gamma distributions, suggesting that multiple sources modulate the regularity of simple spike trains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Neuroscience Wiley

Stochastic description of complex and simple spike firing in cerebellar Purkinje cells

Loading next page...
 
/lp/wiley/stochastic-description-of-complex-and-simple-spike-firing-in-cu8Gh3xCOu

References (31)

Publisher
Wiley
Copyright
Copyright © 2007 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0953-816X
eISSN
1460-9568
DOI
10.1111/j.1460-9568.2007.05308.x
pmid
17328774
Publisher site
See Article on Publisher Site

Abstract

Cerebellar Purkinje cells generate two distinct types of spikes, complex and simple spikes, both of which have conventionally been considered to be highly irregular, suggestive of certain types of stochastic processes as underlying mechanisms. Interestingly, however, the interspike interval structures of complex spikes have not been carefully studied so far. We showed in a previous study that simple spike trains are actually composed of regular patterns and single interspike intervals, a mixture that could not be explained by a simple rate‐modulated Poisson process. In the present study, we systematically investigated the interspike interval structures of separated complex and simple spike trains recorded in anaesthetized rats, and derived an appropriate stochastic model. We found that: (i) complex spike trains do not exhibit any serial correlations, so they can effectively be generated by a renewal process, (ii) the distribution of intervals between complex spikes exhibits two narrow bands, possibly caused by two oscillatory bands (0.5–1 and 4–8 Hz) in the input to Purkinje cells and (iii) the regularity of regular patterns and single interspike intervals in simple spike trains can be represented by gamma processes of orders, which themselves are drawn from gamma distributions, suggesting that multiple sources modulate the regularity of simple spike trains.

Journal

European Journal of NeuroscienceWiley

Published: Feb 1, 2007

There are no references for this article.