Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
While most untransformed cells require substrate attachment for growth (anchorage dependence), the oncogenic transformed cells lack this requirement (anchorage independence) and are often tumorigenic. However, the mechanism of loss of anchorage dependence is not fully understood. When rat normal fibroblasts were cultured in suspension without substrate attachment, the cell cycle arrested in G1 phase and the cyclin-dependent kinase inhibitor p27Kip1 protein and its mRNA accumulated. Conditional expression of oncogenic Ras induced the G1-S transition of the cell cycle and significantly shortened the half-life of p27Kip1 protein without altering its mRNA level. Inhibition of the activation of mitogen-activated protein (MAP) kinase by cyclic AMP-elevating agents and a MEK inhibitor prevented the oncogenic Ras-induced degradation of p27Kip1. These results suggest that the loss of substrate attachment induces the cell cycle arrest through the up-regulation of p27Kip1 mRNA, but the oncogenic Ras confers anchorage independence by accelerating p27Kip1 degradation through the activation of the MAP kinase signaling pathway. Furthermore, we have found that p27Kip1 is phosphorylated by MAP kinase in vitro and the phosphorylated p27Kip1 cannot bind to and inhibit cdk2.
Oncogene – Springer Journals
Published: Dec 18, 1997
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.