Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Kennedy, H. Matsuzaki, Shoulian Dong, Wei‐Min Liu, Jing Huang, Guoying Liu, Xing Su, Manqiu Cao, Wenwei Chen, Jane Zhang, Weiwei Liu, Geoffrey Yang, X. Di, Tom Ryder, Zhehang He, U. Surti, M. Phillips, M. Boyce-Jacino, S. Fodor, K. Jones (2003)
Large-scale genotyping of complex DNANature Biotechnology, 21
S. Sherry, Minghong Ward, K. Sirotkin (1999)
dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation.Genome research, 9 8
Z. Šidák (1971)
On Probabilities of Rectangles in Multivariate Student Distributions: Their Dependence on CorrelationsAnnals of Mathematical Statistics, 42
D. Rabinowitz, N. Laird (2000)
A Unified Approach to Adjusting Association Tests for Population Admixture with Arbitrary Pedigree Structure and Arbitrary Missing Marker InformationHuman Heredity, 50
W. Zhai, M. Todd, R. Nielsen (2004)
Is haplotype block identification useful for association mapping studies?Genetic Epidemiology, 27
Ravi Sachidanandam, David Weissman, Steven Schmidt, Jerzy Kakol, Lincoln Stein, Gabor Marth, Steve Sherry, J. Mullikin, B. Mortimore, David Willey, S. Hunt, Charlotte Cole, Penny Coggill, C. Rice, Zemin Ning, J. Rogers, D. Bentley, Pui-Yan Kwok, E. Mardis, Raymond Yeh, Brian Schultz, L. Cook, Ruth Davenport, M. Dante, L. Fulton, L. Hillier, Robert Waterston, J. Mcpherson, Brian Gilman, Stephen Schaffner, W. Etten, David Reich, J. Higgins, Mark Daly, B. Blumenstiel, J. Baldwin, N. Stange-thomann, M. Zody, L. Linton, Eric Lander, D. Altshuler (2001)
A map of human genome sequence variation containing 1.42 million single nucleotide polymorphismsNature, 409
C. Lange, D. Demeo, E. Silverman, S. Weiss, N. Laird (2004)
PBAT: tools for family-based association studies.American journal of human genetics, 74 2
C. Lange, K. Steen, T. Andrew, H. Lyon, D. Demeo, B. Raby, A. Murphy, E. Silverman, A. Macgregor, S. Weiss, N. Laird (2004)
A Family-Based Association Test for Repeatedly Measured Quantitative Traits Adjusting for Unknown Environmental and/or Polygenic EffectsStatistical Applications in Genetics and Molecular Biology, 3
S. Holm (1979)
A Simple Sequentially Rejective Multiple Test ProcedureScandinavian Journal of Statistics, 6
A Sharper Bonferroni Procedure for Multiple Tests of Significance
D. Schaid, Jennifer Guenther, G. Christensen, S. Hebbring, C. Rosenow, C. Hilker, S. McDonnell, J. Cunningham, S. Slager, M. Blute, S. Thibodeau (2004)
Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility Loci.American journal of human genetics, 75 6
B. Devlin, K. Roeder (1999)
Genomic Control for Association StudiesBiometrics, 55
J. Satagopan, E. Venkatraman, C. Begg (2004)
Two‐Stage Designs for Gene–Disease Association Studies with Sample Size ConstraintsBiometrics, 60
C. Lange, H. Lyon, D. Demeo, B. Raby, E. Silverman, S. Weiss (2003)
A New Powerful Non-Parametric Two-Stage Approach for Testing Multiple Phenotypes in Family-Based Association StudiesHuman Heredity, 56
G. Churchill, R. Doerge (1994)
Empirical threshold values for quantitative trait mapping.Genetics, 138 3
A. Randolph, C. Lange, E. Silverman, R. Lazarus, E. Silverman, B. Raby, Alison Brown, A. Ozonoff, B. Richter, S. Weiss (2004)
The IL12B gene is associated with asthma.American journal of human genetics, 75 4
H. Lyon, C. Lange, S. Lake, E. Silverman, A. Randolph, D. Kwiatkowski, B. Raby, R. Lazarus, Katy Weiland, N. Laird, S. Weiss (2004)
IL10 gene polymorphisms are associated with asthma phenotypes in childrenGenetic Epidemiology, 26
Shin Lin, A. Chakravarti, D. Cutler (2004)
Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studiesNature Genetics, 36
C. Lange, E. Silverman, Xin Xu, S. Weiss, N. Laird (2003)
A multivariate family-based association test using generalized estimating equations: FBAT-GEE.Biostatistics, 4 2
C. Lange, N. Laird (2002)
On a general class of conditional tests for family‐based association studies in genetics: the asymptotic distribution, the conditional power, and optimality considerationsGenetic Epidemiology, 23
G. Marnellos (2003)
High-throughput SNP analysis for genetic association studies.Current opinion in drug discovery & development, 6 3
Toshihiro Tanaka (2003)
The International HapMap ProjectNature, 426
Y. Benjamini, D. Yekutieli (2001)
THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCYAnnals of Statistics, 29
G. Shapiro, T. Duhamel, T. Wighton, T. Chinn, C. Bierman, L. Altman, F. Virant, P. Williams, D. Minotti, Michael Kennedy, J. Becker, Chris Reagan, H. Eliassen, Dan Crawford, Babi Hammond, G. Strodtbeck, M. Sharpe, S. Weiss, D. Greineder, W. Torda, M. Tata, P. Barrant, A. DeFilippo, M. Grace, S. Haynes, M. Higham, S. Kelleher, J. Koslof, N. Madden, D. Mandel, A. Martinez, J. McAuliffe, P. Pacella, P. Parks, A. Plunkett, K. Seligsohn, J. Traylor, M. Horn, J. Ware, C. Wells, A. Whitman, J. Reisman, I. Maclusky, A. Hall, Y. Benedet, J. Chay, M. Collinson, J. Finlayson-Kulchin, K. Gore, M. Miki, R. Sananes, N. Adkinson, P. Eggleston, K. Huss, L. Plotnick, M. Pulsifer, C. Rand, Barbara Wheeler, N. Bollers, K. Hyatt, B. Leritz, M. Pessaro, Stephanie Philips, S. Szefler, H. Nelson, D. Sundstrom, B. Bender, K. Brelsford, M. Gleason, J. Hassell, C. Hendrickson, C. Irvin, T. Junk, A. Liu, J. Spahn, M. White, J. Feeley, J. Bridges, J. Ciacco, M. Eltz, M. Flynn, M. Hefner, D. Hettleman, J. Jacobs, A. Kamada, S. Nimmagadda, K. Sandoval, J. Sheridan, T. Washington, E. Willcutt (1999)
The Childhood Asthma Management Program (CAMP): design, rationale, and methods. Childhood Asthma Management Program Research Group.Controlled clinical trials, 20 1
C Lange, DL DeMeo, NM Laird (2002)
Power calculations for a general class of family-based association tests: Quantitative traitsAm. J. Hum. Genet., 71
C. Lange, D. Demeo, N. Laird (2002)
Power and design considerations for a general class of family-based association tests: quantitative traits.American journal of human genetics, 71 6
C Lange, E Silverman, ST Weiss, X Xu, NM Laird (2003)
A multivariate family-based test using generalized estimating equations: FBAT-GEEBiostatistics, 4
N. Laird, S. Horvath, Xin Xu (2000)
Implementing a unified approach to family‐based tests of associationGenetic Epidemiology, 19
K. Steen, C. Lange (2005)
PBAT: A comprehensive software package for genome-wide association analysis of complex family-based studiesHuman Genomics, 2
S. Weiss, B. Raby (2004)
Asthma genetics 2003.Human molecular genetics, 13 Spec No 1
Y. Benjamini, Y. Hochberg (1995)
Controlling the false discovery rate: a practical and powerful approach to multiple testingJournal of the royal statistical society series b-methodological, 57
D. Duffy, N. Martin, D. Battistutta, J. Hopper, J. Mathews (1990)
Genetics of asthma and hay fever in Australian twins.The American review of respiratory disease, 142 6 Pt 1
R. Doerge, G. Churchill (1996)
Permutation tests for multiple loci affecting a quantitative character.Genetics, 142 1
CE Bonferroni (1937)
Volume in Onore di Ricarrdo dalla Volta, Universita di Firenza
C. Lange, D. Demeo, E. Silverman, S. Weiss, N. Laird (2003)
Using the noninformative families in family-based association tests: a powerful new testing strategy.American journal of human genetics, 73 4
R. Spielman, R. McGinnis, Warren Ewenst (1993)
Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM).American journal of human genetics, 52 3
C. Lange, N. Laird (2002)
Power calculations for a general class of family-based association tests: dichotomous traits.American journal of human genetics, 71 3
The Human Genome Project and its spin-offs are making it increasingly feasible to determine the genetic basis of complex traits using genome-wide association studies. The statistical challenge of analyzing such studies stems from the severe multiple-comparison problem resulting from the analysis of thousands of SNPs. Our methodology for genome-wide family-based association studies, using single SNPs or haplotypes, can identify associations that achieve genome-wide significance. In relation to developing guidelines for our screening tools, we determined lower bounds for the estimated power to detect the gene underlying the disease-susceptibility locus, which hold regardless of the linkage disequilibrium structure present in the data. We also assessed the power of our approach in the presence of multiple disease-susceptibility loci. Our screening tools accommodate genomic control and use the concept of haplotype-tagging SNPs. Our methods use the entire sample and do not require separate screening and validation samples to establish genome-wide significance, as population-based designs do.
Nature Genetics – Springer Journals
Published: Jun 5, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.