Access the full text.
Sign up today, get DeepDyve free for 14 days.
Hannah Humayun, Junjie Yao (2019)
Imaging the aged brain: pertinence and methods.Quantitative imaging in medicine and surgery, 9 5
(1994)
Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection
K. Clark, Bruce Vendt, Kirk Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, Stanley Phillips, David Maffitt, Michael Pringle, Lawrence Tarbox, F. Prior (2013)
The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information RepositoryJournal of Digital Imaging, 26
Leland Hu, L. Baxter, Kris Smith, B. Feuerstein, J. Karis, J. Eschbacher, S. Coons, P. Nakaji, R. Yeh, J. Debbins, J. Heiserman (2009)
Relative Cerebral Blood Volume Values to Differentiate High-Grade Glioma Recurrence from Posttreatment Radiation Effect: Direct Correlation between Image-Guided Tissue Histopathology and Localized Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging MeasurementsAmerican Journal of Neuroradiology, 30
Bjoern Menze, A. Jakab, S. Bauer, Jayashree Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerstner, M. Weber, T. Arbel, B. Avants, N. Ayache, Patricia Buendia, D. Collins, Nicolas Cordier, Jason Corso, A. Criminisi, T. Das, H. Delingette, Çağatay Demiralp, C. Durst, M. Dojat, Senan Doyle, Joana Festa, F. Forbes, Ezequiel Geremia, B. Glocker, P. Golland, Xiaotao Guo, A. Hamamci, K. Iftekharuddin, R. Jena, N. John, E. Konukoglu, D. Lashkari, J. Mariz, Raphael Meier, Sérgio Pereira, Doina Precup, S. Price, Tammy Riklin-Raviv, Syed Reza, Michael Ryan, Duygu Sarikaya, L. Schwartz, Hoo-Chang Shin, J. Shotton, Carlos Silva, N. Sousa, N. Subbanna, G. Székely, Thomas Taylor, O. Thomas, N. Tustison, Gözde Ünal, F. Vasseur, M. Wintermark, Dong Ye, Liang Zhao, Binsheng Zhao, D. Zikic, M. Prastawa, M. Reyes, K. Leemput (2015)
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)IEEE Transactions on Medical Imaging, 34
E. Paulson, K. Schmainda (2008)
Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors.Radiology, 249 2
D. Bedekar, Todd Jensen, K. Schmainda (2010)
Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter‐ and intrapatient comparisonsMagnetic Resonance in Medicine, 64
K. Leu, J. Boxerman, B. Ellingson (2017)
Effects of MRI Protocol Parameters, Preload Injection Dose, Fractionation Strategies, and Leakage Correction Algorithms on the Fidelity of Dynamic-Susceptibility Contrast MRI Estimates of Relative Cerebral Blood Volume in GliomasAmerican Journal of Neuroradiology, 38
T. Sugahara, Y. Korogi, S. Tomiguchi, Y. Shigematsu, I. Ikushima, T. Kira, L. Liang, Yukitaka Ushio, Mutsumasa Takahashi (2000)
Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue.AJNR. American journal of neuroradiology, 21 5
K. Jafari-Khouzani, K. Emblem, Jayashree Kalpathy-Cramer, A. Bjørnerud, M. Vangel, E. Gerstner, K. Schmainda, K. Paynabar, O. Wu, P. Wen, T. Batchelor, B. Rosen, S. Stufflebeam (2015)
Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients12Translational Oncology, 8
Sun Lee, Jae Kim, Young Kim, Gyung Lee, Eun Lee, In Park, Jin-Myung Jung, K. Kang, Taemin Shin (2001)
Perfusion MR Imaging in Gliomas: Comparison with Histologic Tumor GradeKorean Journal of Radiology, 2
D. Aquino, Andrea Gioppo, G. Finocchiaro, M. Bruzzone, V. Cuccarini (2017)
MRI in Glioma Immunotherapy: Evidence, Pitfalls, and PerspectivesJournal of Immunology Research, 2017
D. Kong, S.T. Kim, E. Kim, D. Lim, W. Kim, Y. Suh, J. Lee, K. Park, J.H. Kim, D. Nam (2011)
Diagnostic Dilemma of Pseudoprogression in the Treatment of Newly Diagnosed Glioblastomas: The Role of Assessing Relative Cerebral Blood Flow Volume and Oxygen-6-Methylguanine-DNA Methyltransferase Promoter Methylation StatusAmerican Journal of Neuroradiology, 32
M. Law, R. Young, J. Babb, N. Peccerelli, S. Chheang, M. Gruber, Douglas Miller, J. Golfinos, D. Zagzag, G. Johnson (2008)
Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging.Radiology, 247 2
R. Harris, T. Cloughesy, A. Hardy, L. Liau, W. Pope, P. Nghiemphu, A. Lai, B. Ellingson (2015)
MRI perfusion measurements calculated using advanced deconvolution techniques predict survival in recurrent glioblastoma treated with bevacizumabJournal of Neuro-Oncology, 122
Reevaluating the imag-FIG
B. Rosen, J. Belliveau, J. Vevea, T. Brady (1990)
Perfusion imaging with NMR contrast agentsMagnetic Resonance in Medicine, 14
(2018)
T1-andT2*-dominant
E. Paulson, D. Prah, K. Schmainda (2016)
Spiral Perfusion Imaging With Consecutive Echoes (SPICE™) for the Simultaneous Mapping of DSC- and DCE-MRI Parameters in Brain Tumor Patients: Theory and Initial FeasibilityTomography, 2
K. Schmainda, M. Prah, L. Hu, C. Quarles, N. Semmineh, S. Rand, Jennifer Connelly, B. Anderies, Y. Zhou, Ying Liu, Brent Logan, Ashley Stokes, Grayson Baird, J. Boxerman (2019)
Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low–Flip Angle Single-Dose Option as a Reference Standard for Brain TumorsAmerican Journal of Neuroradiology, 40
Mohammad Havaei, Axel Davy, David Warde-Farley, A. Biard, Aaron Courville, Yoshua Bengio, C. Pal, Pierre-Marc Jodoin, H. Larochelle (2015)
Brain tumor segmentation with Deep Neural NetworksMedical Image Analysis, 35
J. Boxerman, K. Schmainda, R. Weisskoff (2006)
Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not.AJNR. American journal of neuroradiology, 27 4
Paper previously presented, in part
Eike Steidl, M. Müller, A. Müller, U. Herrlinger, E. Hattingen (2019)
Longitudinal, leakage corrected and uncorrected rCBV during the first-line treatment of glioblastoma: a prospective studyJournal of Neuro-Oncology, 144
P. Kickingereder, B. Wiestler, Sina Burth, A. Wick, M. Nowosielski, S. Heiland, H. Schlemmer, W. Wick, M. Bendszus, A. Radbruch (2015)
Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma.Neuro-oncology, 17 8
K. Schmainda, M. Prah, J. Connelly, S. Rand, R. Hoffman, W. Mueller, M. Malkin (2014)
Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma.Neuro-oncology, 16 6
K. Schmainda, S. Rand, A. Joseph, R. Lund, B. Ward, A. Pathak, J. Ulmer, M. Badruddoja, H. Krouwer (2004)
Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis.AJNR. American journal of neuroradiology, 25 9
J. Boxerman, M. Shiroishi, B. Ellingson, W. Pope (2016)
Dynamic Susceptibility Contrast MR Imaging in Glioma: Review of Current Clinical Practice.Magnetic resonance imaging clinics of North America, 24 4
J. Perkiö, H. Aronen, A. Kangasmäki, Yawu Liu, J. Karonen, S. Savolainen, L. Østergaard (2002)
Evaluation of four postprocessing methods for determination of cerebral blood volume and mean transit time by dynamic susceptibility contrast imagingMagnetic Resonance in Medicine, 47
T. Saito, F. Yamasaki, Y. Kajiwara, N. Abe, Y. Akiyama, T. Kakuda, Y. Takeshima, K. Sugiyama, Y. Okada, K. Kurisu (2012)
Role of perfusion-weighted imaging at 3T in the histopathological differentiation between astrocytic and oligodendroglial tumors.European journal of radiology, 81 8
M. Law, Stanley Yang, Hao Wang, J. Babb, G. Johnson, S. Cha, E. Knopp, D. Zagzag (2003)
Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging.AJNR. American journal of neuroradiology, 24 10
S. Saraswathy, Forrest Crawford, K. Lamborn, A. Pirzkall, Susan Chang, S. Cha, S. Nelson (2008)
Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapyJournal of Neuro-Oncology, 91
M. Law, Sarah Oh, J. Babb, E. Wang, M. Inglese, D. Zagzag, E. Knopp, G. Johnson (2006)
Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response.Radiology, 238 2
J. Vymazal, E. Wong (2014)
Response patterns of recurrent glioblastomas treated with tumor-treating fields.Seminars in oncology, 41 Suppl 6
A. Bjørnerud, A. Bjørnerud, A. Sorensen, Kim Mouridsen, Kim Mouridsen, K. Emblem, K. Emblem (2011)
T1- and T*2-Dominant Extravasation Correction in DSC-MRI: Part I—Theoretical Considerations and Implications for Assessment of Tumor Hemodynamic PropertiesJournal of Cerebral Blood Flow & Metabolism, 31
M. Prah, M. Al-Gizawiy, W. Mueller, E. Cochran, R. Hoffmann, J. Connelly, K. Schmainda (2017)
Spatial discrimination of glioblastoma and treatment effect with histologically-validated perfusion and diffusion magnetic resonance imaging metricsJournal of Neuro-Oncology, 136
T. Hirai, R. Murakami, Hideo Nakamura, M. Kitajima, H. Fukuoka, A. Sasao, M. Akter, Y. Hayashida, R. Toya, N. Oya, K. Awai, K. Iyama, J. Kuratsu, Y. Yamashita (2008)
Prognostic Value of Perfusion MR Imaging of High-Grade Astrocytomas: Long-Term Follow-Up StudyAmerican Journal of Neuroradiology, 29
N. Semmineh, A. Stokes, L. Bell, J. Boxerman, C. Quarles (2017)
A Population-Based Digital Reference Object (DRO) for Optimizing Dynamic Susceptibility Contrast (DSC)-MRI Methods for Clinical TrialsTomography, 3
D. Brandsma, M. Bent (2009)
Pseudoprogression and pseudoresponse in the treatment of gliomasCurrent Opinion in Neurology, 22
P. Korfiatis, T. Kline, Zachary Kelm, R. Carter, Leland Hu, B. Erickson (2016)
Dynamic Susceptibility Contrast-MRI Quantification Software Tool: Development and EvaluationTomography, 2
P. Wen, A. Norden, J. Drappatz, E. Quant (2010)
Response Assessment Challenges in Clinical Trials of GliomasCurrent Oncology Reports, 12
D. Bedekar, Todd Jensen, M. Malkin, J. Connelly, K. Schmainda (2010)
Delta T1 Method: An Automatic Post-contrast ROI Selection Technique for Brain Tumors
Zachary Kelm, P. Korfiatis, R. Lingineni, J. Daniels, J. Buckner, D. Lachance, I. Parney, R. Carter, B. Erickson (2015)
Variability and accuracy of different software packages for dynamic susceptibility contrast magnetic resonance imaging for distinguishing glioblastoma progression from pseudoprogressionJournal of Medical Imaging, 2
Please address correspondence to Kathleen M. Schmainda, PhD, Medical College of Wisconsin, Department of Radiology, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
L. Orsingher, S. Piccinini, G. Crisi (2014)
Differences in Dynamic Susceptibility Contrast MR Perfusion Maps Generated by Different Methods Implemented in Commercial SoftwareJournal of Computer Assisted Tomography, 38
Leland Hu, Zachary Kelm, P. Korfiatis, A. Dueck, Christian Elrod, B. Ellingson, T. Kaufmann, J. Eschbacher, J. Karis, Kris Smith, Peter Nakaji, Debra Brinkman, D. Pafundi, L. Baxter, Bradley Erickson (2015)
Impact of Software Modeling on the Accuracy of Perfusion MRI in GliomaAmerican Journal of Neuroradiology, 36
Z. Jiang, J. Bas, S. Grand, C. Salon, C. Pasteris, D. Hoffmann, F. Bing, F. Berger, S. Chabardès, C. Liu, A. Krainik (2011)
Prognostic value of perfusion MR imaging in patients with oligodendroglioma: A survival study.Journal of neuroradiology. Journal de neuroradiologie, 38 1
P. Wen, D. MacDonald, D. Reardon, T. Cloughesy, A. Sorensen, E. Galanis, J. Degroot, W. Wick, M. Gilbert, A. Lassman, C. Tsien, T. Mikkelsen, Eric Wong, M. Chamberlain, R. Stupp, K. Lamborn, M. Vogelbaum, M. Bent, Susan Chang (2010)
Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28 11
D. MacDonald, T. Cascino, S. Schold, J. Cairncross, G. Cairncross (1990)
Response criteria for phase II studies of supratentorial malignant glioma.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 8 7
(2016)
Glioma DSC-MRI perfusion data with standard imaging and ROIs
Ho-Ling Liu, Yi-Ying Wu, Wei-Shan Yang, Chih-Feng Chen, K. Lim, Y. Hsu (2011)
Is Weisskoff model valid for the correction of contrast agent extravasation with combined T1 and T2* effects in dynamic susceptibility contrast MRI?Medical physics, 38 2
M. Lev, Y. Ozsunar, Y. Ozsunar, J. Henson, Amjad Rasheed, G. Barest, G. Harsh, M. Fitzek, E. Chiocca, J. Rabinov, Andrew Csavoy, B. Rosen, F. Hochberg, P. Schaefer, R. Gonzalez (2004)
Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected].AJNR. American journal of neuroradiology, 25 2
L. Bell, N. Semmineh, H. An, C. Eldeniz, R. Wahl, K. Schmainda, M. Prah, B. Erickson, P. Korfiatis, Chengyue Wu, A. Sorace, T. Yankeelov, N. Rutledge, T. Chenevert, D. Malyarenko, Yichu Liu, A. Brenner, Leland Hu, Yuxiang Zhou, J. Boxerman, Yi-Fen Yen, Jayashree Kalpathy-Cramer, Andrew Beers, M. Muzi, A. Madhuranthakam, M. Pinho, Brian Johnson, C. Quarles (2019)
Evaluating Multisite rCBV Consistency from DSC-MRI Imaging Protocols and Postprocessing Software Across the NCI Quantitative Imaging Network Sites Using a Digital Reference Object (DRO)Tomography, 5
Leland Hu, J. Eschbacher, J. Heiserman, A. Dueck, W. Shapiro, Seban Liu, J. Karis, Kris Smith, S. Coons, P. Nakaji, R. Spetzler, B. Feuerstein, J. Debbins, L. Baxter (2012)
Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survivalNeuro-Oncology, 14
Linda Knutsson, E. Larsson, O. Thilmann, F. Ståhlberg, R. Wirestam (2006)
Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysisJournal of Magnetic Resonance Imaging, 23
ORIGINAL RESEARCH ADULT BRAIN Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project X K.M. Schmainda, X M.A. Prah, X S.D. Rand, X Y. Liu, X B. Logan, X M. Muzi, X S.D. Rane, X X. Da, X Y.-F. Yen, X J. Kalpathy-Cramer, X T.L. Chenevert, X B. Hoff, X B. Ross, X Y. Cao, X M.P. Aryal, X B. Erickson, X P. Korfiatis, X T. Dondlinger, X L. Bell, X L. Hu, X P.E. Kinahan, and X C.C. Quarles ABSTRACT BACKGROUND AND PURPOSE: Standardassessmentcriteriaforbraintumorsthatonlyincludeanatomicimagingcontinuetobeinsufficient. While numerous studies have demonstrated the value of DSC-MR imaging perfusion metrics for this purpose, they have not been incorporated due to a lack of confidence in the consistency of DSC-MR imaging metrics across sites and platforms. This study addresses this limitation with a comparison of multisite/multiplatform analyses of shared DSC-MR imaging datasets of patients with brain tumors. MATERIALS AND METHODS: DSC-MR imaging data were collected after a preload and during a bolus injection of gadolinium contrast agent using a gradient recalled-echo–EPI sequence (TE/TR 30/1200 ms; flip angle 72°). Forty-nine low-grade (n 13) and high-grade (n 36) glioma datasets were
American Journal of Neuroradiology – American Journal of Neuroradiology
Published: Jun 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.