Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin

Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of... CLOSTRIDIAL neurotoxins, including tetanus toxin and the seven serotypes of botulinum toxin (A–G), are produced as single chains and cleaved to generate toxins with two chains joined by a single disulphide bond (Fig. 1). The heavy chain (Mr 100,000 (100K)) is responsible for specific binding to neuronal cells and cell penetration of the light chain (50K), which blocks neurotransmitter release1–9. Several lines of evidence have recently suggested that clostridial neurotoxins could be zinc endopeptidases2,10–14. Here we show that tetanus and botulinum toxins serotype B are zinc endopeptidases, the activation of which requires reduction of the interchain disulphide bond. The protease activity is localized on the light chain and is specific for synaptobrevin, an integral membrane protein of small synaptic vesicles. The rat synaptobrevin-2 isoform is cleaved by both neurotoxins at the same single site, the peptide bond Gln76-Phe77, but the isoform synaptobrevin-1, which has a valine at the corresponding position, is not cleaved. The blocking of neurotransmitter release of Aplysia neurons injected with tetanus toxin or botulinum toxin serotype B is substantially delayed by peptides containing the synaptobrevin-2 cleavage site. These results indicate that tetanus and botulinum B neurotoxins block neurotransmitter release by cleaving synaptobrevin-2, a protein that, on the basis of our results, seems to play a key part in neurotransmitter release. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Springer Journals

Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin

Loading next page...
 
/lp/springer-journals/tetanus-and-botulinum-b-neurotoxins-block-neurotransmitter-release-by-doOPp1Snyt

References (24)

Publisher
Springer Journals
Copyright
Copyright © 1992 by Nature Publishing Group
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
ISSN
0028-0836
eISSN
1476-4687
DOI
10.1038/359832a0
Publisher site
See Article on Publisher Site

Abstract

CLOSTRIDIAL neurotoxins, including tetanus toxin and the seven serotypes of botulinum toxin (A–G), are produced as single chains and cleaved to generate toxins with two chains joined by a single disulphide bond (Fig. 1). The heavy chain (Mr 100,000 (100K)) is responsible for specific binding to neuronal cells and cell penetration of the light chain (50K), which blocks neurotransmitter release1–9. Several lines of evidence have recently suggested that clostridial neurotoxins could be zinc endopeptidases2,10–14. Here we show that tetanus and botulinum toxins serotype B are zinc endopeptidases, the activation of which requires reduction of the interchain disulphide bond. The protease activity is localized on the light chain and is specific for synaptobrevin, an integral membrane protein of small synaptic vesicles. The rat synaptobrevin-2 isoform is cleaved by both neurotoxins at the same single site, the peptide bond Gln76-Phe77, but the isoform synaptobrevin-1, which has a valine at the corresponding position, is not cleaved. The blocking of neurotransmitter release of Aplysia neurons injected with tetanus toxin or botulinum toxin serotype B is substantially delayed by peptides containing the synaptobrevin-2 cleavage site. These results indicate that tetanus and botulinum B neurotoxins block neurotransmitter release by cleaving synaptobrevin-2, a protein that, on the basis of our results, seems to play a key part in neurotransmitter release.

Journal

NatureSpringer Journals

Published: Oct 29, 1992

There are no references for this article.