Access the full text.
Sign up today, get DeepDyve free for 14 days.
F. Smit, L. Bolier, P. Cuijpers (2004)
Cannabis use and the risk of later schizophrenia: a review.Addiction, 99 4
N. Hájos, C. Ledent, T. Freund (2001)
Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampusNeuroscience, 106
B. Seltzer, D. Pandya (1989)
Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkeyJournal of Comparative Neurology, 290
H. Barbas, D. Pandya, D. Pandya (1989)
Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkeyJournal of Comparative Neurology, 286
L. Matsuda, S. Lolait, M. Brownstein, A. Young, T. Bonner (1990)
Structure of a cannabinoid receptor and functional expression of the cloned cDNANature, 346
S. Hsu, L. Raine, H. Fanger (1981)
Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 29
I. Katona, B. Sperlágh, Z. Maglóczky, E. Sántha, A. Köfalvi, S. Czirják, K. Mackie, E. Vizi, T. Freund (2000)
GABAergic interneurons are the targets of cannabinoid actions in the human hippocampusNeuroscience, 100
D. Boussaoud, Leslie Ungerleider, R. Desimone (1990)
Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaqueJournal of Comparative Neurology, 296
A. Biegon, I. Kerman (2001)
Autoradiographic Study of Pre- and Postnatal Distribution of Cannabinoid Receptors in Human BrainNeuroImage, 14
M. Begg, P. Pacher, S. Batkai, D. Osei-Hyiaman, László Offertáler, F. Mo, Jie Liu, G. Kunos (2005)
Evidence for novel cannabinoid receptors.Pharmacology & therapeutics, 106 2
Melvin Greer (1970)
Neuromuscular Diseases of Infancy and ChildhoodNeurology, 20
S. Carmichael, J. Price (1994)
Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkeyJournal of Comparative Neurology, 346
G. Marsicano, B. Lutz (1999)
Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrainEuropean Journal of Neuroscience, 11
D. Lewis, M. Campbell, J. Morrison (1986)
An immunohistochemical characterization of somatostatin‐28 and somatostatin‐281–12 in monkey prefrontal cortexJournal of Comparative Neurology, 248
I. Katona, B. Sperlágh, A. Sik, Attila Käfalvi, E. Vizi, K. Mackie, T. Freund (1999)
Presynaptically Located CB1 Cannabinoid Receptors Regulate GABA Release from Axon Terminals of Specific Hippocampal InterneuronsThe Journal of Neuroscience, 19
T. Freund (2003)
Interneuron Diversity series: Rhythm and mood in perisomatic inhibitionTrends in Neurosciences, 26
A. Pitkänen, D. Amaral (1998)
Organization of the intrinsic connections of the monkey amygdaloid complex: Projections originating in the lateral nucleusJournal of Comparative Neurology, 398
W. Devane, L. Hanuš, A. Breuer, R. Pertwee, L. Stevenson, G. Griffin, D. Gibson, A. Mandelbaum, A. Etinger, R. Mechoulam (1992)
Isolation and structure of a brain constituent that binds to the cannabinoid receptor.Science, 258 5090
R. Insausti, D. Amaral, W. Cowan (1987)
The entorhinal cortex of the monkey: III. Subcortical afferentsJournal of Comparative Neurology, 264
T. Sawaguchi, M. Matsumura, K. Kubota (1988)
Delayed response deficit in monkeys by locally disturbed prefrontal neuronal activity by bicucullineBehavioural Brain Research, 31
D. Fitzpatrick, J. Lund, G. Blasdel (1985)
Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C, 5
K. Tsou, S. Brown, Sañudo-Peña Mc, K. Mackie, J. Walker (1998)
Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous systemNeuroscience, 83
J. Alonso, H. U, D. Amaral (1996)
Cholinergic innervation of the primate hippocampal formation: II. Effects of fimbria/fornix transectionJournal of Comparative Neurology, 375
A. Ameri (1999)
The effects of cannabinoids on the brainProgress in Neurobiology, 58
Marc Howard, D. Rizzuto, J. Caplan, J. Madsen, J. Lisman, R. Aschenbrenner-Scheibe, A. Schulze-Bonhage, M. Kahana (2003)
Gamma oscillations correlate with working memory load in humans.Cerebral cortex, 13 12
X. Lu, W. Ong, K. Mackie (1999)
A light and electron microscopic study of the CB1 cannabinoid receptor in monkey basal forebrainJournal of Neurocytology, 28
W. Ong, K. Mackie (1999)
A light and electron microscopic study of the CB1 cannabinoid receptor in primate brainNeuroscience, 92
M. Pistis, L. Ferraro, Luigi Pira, G. Flore, S. Tanganelli, G. Gessa, P. Devoto (2002)
Δ9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis studyBrain Research, 948
A. Zimmer, A. Zimmer, A. Hohmann, M. Herkenham, T. Bonner (1999)
Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice.Proceedings of the National Academy of Sciences of the United States of America, 96 10
JamesW. Lewis, D. Essen (2000)
Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortexJournal of Comparative Neurology, 428
R. Mechoulam, S. Ben-Shabat, L. Hanuš, M. Ligumsky, N. Kaminski, A. Schatz, A. Gopher, S. Almog, B. Martin, D. Compton, R. Pertwee, G. Griffin, M. Bayewitch, J. Barg, Z. Vogel (1995)
Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors.Biochemical pharmacology, 50 1
D. Melchitzky, S. Eggan, D. Lewis (2005)
Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortexNeuroscience, 130
R. Morecraft, P. Cipolloni, K. Stilwell-Morecraft, M. Gedney, Deepak Pandya, Deepak Pandya (2004)
Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkeyJournal of Comparative Neurology, 469
V. Tennyson (1970)
The Fine Structure of the Nervous System.JAMA Neurology, 22
Rachel Wilson, R. Nicoll (2002)
Endocannabinoid Signaling in the BrainScience, 296
P. Winsauer, P. Lambert, J. Moerschbaecher (1999)
Cannabinoid ligands and their effects on learning and performance in rhesus monkeys.Behavioural pharmacology, 10 5
N. Hájos, I. Katona, S. Naiem, K. Mackie, C. Ledent, I. Módy, T. Freund (2000)
Cannabinoids inhibit hippocampal GABAergic transmission and network oscillationsEuropean Journal of Neuroscience, 12
D. Cruz, S. Eggan, D. Lewis (2003)
Postnatal development of pre‐ and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortexJournal of Comparative Neurology, 465
G. Paxinos, Xu‐Feng Huang, A. Toga (1999)
The Rhesus Monkey Brain in Stereotaxic Coordinates
A. Jongen-Rêlo, A. Pitkänen, D. Amaral (1999)
Distribution of GABAergic cells and fibers in the hippocampal formation of the Macaque monkey: An immunohistochemical and in situ hybridization studyJournal of Comparative Neurology, 408
W. Devane, F. Dysarz, M. Johnson, L. Melvin, A. Howlett (1988)
Determination and characterization of a cannabinoid receptor in rat brain.Molecular pharmacology, 34 5
C. Cavada, P. Goldman-Rakic (1989)
Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connectionsJournal of Comparative Neurology, 287
S. Rao, Graham Williams, P. Goldman-Rakic (2000)
Destruction and Creation of Spatial Tuning by Disinhibition: GABAA Blockade of Prefrontal Cortical Neurons Engaged by Working MemoryThe Journal of Neuroscience, 20
M. Herkenham, Abigail Lynn, M.Ross Johnson, L. Melvin, B. Costa, K. Rice (1991)
Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study, 11
C. Colby, M. Goldberg (1999)
Space and attention in parietal cortex.Annual review of neuroscience, 22
S. Watson, John Benson, J. Joy (2000)
Marijuana and medicine: assessing the science base: a summary of the 1999 Institute of Medicine report.Archives of general psychiatry, 57 6
Miriam Schneider, M. Koch (2003)
Chronic Pubertal, but not Adult Chronic Cannabinoid Treatment Impairs Sensorimotor Gating, Recognition Memory, and the Performance in a Progressive Ratio Task in Adult RatsNeuropsychopharmacology, 28
A. Galaburda, D. Pandya (1983)
The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkeyJournal of Comparative Neurology, 221
M. Glass, R. Faull, M. Dragunow (1997)
Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brainNeuroscience, 77
M. Egertová, M. Elphick (2000)
Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C‐terminal tail of CB1Journal of Comparative Neurology, 422
M. Rinaldi-Carmona, F. Barth, J. Millan, J. Derocq, P. Casellas, C. Congy, Didier Oustric, Martine Sarran, M. Bouaboula, B. Calandra, Marielle Portier, D. Shire, J. Breliere, Gérard, Le, Fur (1998)
SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor.The Journal of pharmacology and experimental therapeutics, 284 2
M. Rinaldi-Carmona, F. Barth, M. Héaulme, D. Shire, B. Calandra, C. Congy, Serge Martinez, J. Maruani, G. Néliat, D. Caput, P. Ferrara, P. Soubrié, J. Breliere, G. Fur (1994)
SR141716A, a potent and selective antagonist of the brain cannabinoid receptorFEBS Letters, 350
N. Auclair, S. Otani, P. Soubrié, F. Crépel (2000)
Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons.Journal of neurophysiology, 83 6
M. Mesulam, E. Mufson (1982)
Insula of the old world monkey. Architectonics in the insulo‐orbito‐temporal component of the paralimbic brainJournal of Comparative Neurology, 212
D. Shire, C. Carillon, M. Kaghad, B. Calandra, M. Rinaldi-Carmona, G. Fur, D. Caput, P. Ferrara (1995)
An Amino-terminal Variant of the Central Cannabinoid Receptor Resulting from Alternative Splicing (*)The Journal of Biological Chemistry, 270
S. Gilman (1972)
Cerebellum of the Rhesus Monkey: Atlas of Lobules, Laminae, and Folia, in Sections.JAMA Neurology, 26
D. Amaral, J. Bassett (1989)
Cholinergic innervation of the monkey amygdala: An immunohistochemical analysis with antisera to choline acetyltransferaseJournal of Comparative Neurology, 281
L. Matsuda, T. Bonner, S. Lolait (1993)
Localization of cannabinoid receptor mRNA in rat brainJournal of Comparative Neurology, 327
H. Braak (1976)
On the striate area of the human isocortex. A golgi‐ and pigmentarchitectonic studyJournal of Comparative Neurology, 166
K. Oeth, D. Lewis (1990)
Cholecystokinin innervation of monkey prefrontal cortex:An immunohistochemical studyJournal of Comparative Neurology, 301
S. Munro, K. Thomas, Muna Abu-Shaar (1993)
Molecular characterization of a peripheral receptor for cannabinoidsNature, 365
J. Callicott, V. Mattay, B. Verchinski, S. Marenco, M. Egan, D. Weinberger (2003)
Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down.The American journal of psychiatry, 160 12
G. Rajkowska, P. Goldman-Rakic (1995)
Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria.Cerebral cortex, 5 4
K. Oeth, D. Lewis (1993)
Postnatal development of the cholecystokinin innervation of monkey prefrontal cortexJournal of Comparative Neurology, 336
J. Madigan, M. Carpenter (1971)
Cerebellum of the rhesus monkey : atlas of lobules, laminae, and folia, in sections
M. Galarreta, F. Erdélyi, G. Szabó, S. Hestrin (2004)
Electrical Coupling among Irregular-Spiking GABAergic Interneurons Expressing Cannabinoid ReceptorsThe Journal of Neuroscience, 24
D. Pandya, B. Seltzer (1982)
Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkeyJournal of Comparative Neurology, 204
C. Hsieh, S. Brown, C. Derleth, Ken Mackie (1999)
Internalization and Recycling of the CB1 Cannabinoid ReceptorJournal of Neurochemistry, 73
A. Bodor, I. Katona, G. Nyiri, K. Mackie, C. Ledent, N. Hájos, T. Freund (2005)
Endocannabinoid Signaling in Rat Somatosensory Cortex: Laminar Differences and Involvement of Specific Interneuron TypesThe Journal of Neuroscience, 25
I. Katona, E. Rancz, L. Acsády, C. Ledent, K. Mackie, N. Hájos, T. Freund (2001)
Distribution of CB1 Cannabinoid Receptors in the Amygdala and their Role in the Control of GABAergic TransmissionThe Journal of Neuroscience, 21
M. Pistis, L. Ferraro, Luigi Pira, G. Flore, S. Tanganelli, G. Gessa, P. Devoto (2002)
Delta(9)-tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study.Brain research, 948 1-2
Joseph Trettel, D. Fortin, E. Levine (2004)
Endocannabinoid signalling selectively targets perisomatic inhibitory inputs to pyramidal neurones in juvenile mouse neocortexThe Journal of Physiology, 556
B. Vogt, D. Pandya, D. Rosene (1987)
Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferentsJournal of Comparative Neurology, 262
C. Breivogel, G. Griffin, V. Marzo, B. Martin (2001)
Evidence for a new G protein-coupled cannabinoid receptor in mouse brain.Molecular pharmacology, 60 1
D. Lewis, T. Hashimoto, D. Volk (2005)
Cortical inhibitory neurons and schizophreniaNature Reviews Neuroscience, 6
T. Hackett, I. Stepniewska, Jon Kaas (1998)
Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeysJournal of Comparative Neurology, 394
D. D’Souza, E. Perry, L. Macdougall, Yola Ammerman, T. Cooper, Yu-Te Wu, Gabriel Braley, R. Gueorguieva, J. Krystal (2004)
The Psychotomimetic Effects of Intravenous Delta-9-Tetrahydrocannabinol in Healthy Individuals: Implications for PsychosisNeuropsychopharmacology, 29
P. Cipolloni, D. Pandya, D. Pandya (1999)
Cortical connections of the frontoparietal opercular areas in the Rhesus monkeyJournal of Comparative Neurology, 403
H. Ujike, Y. Morita (2004)
New perspectives in the studies on endocannabinoid and cannabis: cannabinoid receptors and schizophrenia.Journal of pharmacological sciences, 96 4
J. Alonso, D. Amaral (1995)
Cholinergin innervation of the primate hippocampal formation. I. Distribution of choline acetyltransferasse immunoreactivity in the Macaca fascicularis and Macaca mulatta monkeysJournal of Comparative Neurology, 355
S. Sesack, Christopher Snyder, D. Lewis (1995)
Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA‐immunoreactive dendrites in rat and monkey cortexJournal of Comparative Neurology, 363
J. White, Erica Southgate, J. Thomson, S. Brenner (1986)
The structure of the nervous system of the nematode Caenorhabditis elegans.Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 314 1165
S. Childers, C. Breivogel (1998)
Cannabis and endogenous cannabinoid systems.Drug and alcohol dependence, 51 1-2
H. Burton, M. Fabri, K. Alloway (1995)
Cortical areas within the lateral sulcus connected to cutaneous representations in areas 3b and 1: A revised interpretation of the second somatosensory area in macaque monkeysJournal of Comparative Neurology, 355
S. Sesack, V. Hawrylak, Claudia Matus, M. Guido, A. Levey (1998)
Dopamine Axon Varicosities in the Prelimbic Division of the Rat Prefrontal Cortex Exhibit Sparse Immunoreactivity for the Dopamine TransporterThe Journal of Neuroscience, 18
G. Rajkowska, P. Goldman-Rakic (1995)
Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System.Cerebral cortex, 5 4
Delta-9-tetrahydrocannabinol (9-THC) has profound effects on higher cognitive functions, and exposure to 9-THC has been associated with the appearance or exacerbation of the clinical features of schizophrenia. These actions appear to be mediated via the CB1 receptor, the principal cannabinoid receptor expressed in the brain. However, the distribution of the CB1 receptor in neocortical regions of the primate brain that mediate cognitive functions is not known. We therefore investigated the immunocytochemical localization of the CB1 receptor in the brains of macaque monkeys and humans using antibodies that specifically recognize the N- or C-terminus of the CB1 receptor. In monkeys, intense CB1 immunoreactivity was observed primarily in axons and boutons. Across neocortical regions of the monkey brain, CB1-immunoreactive (IR) axons exhibited considerable heterogeneity in density and laminar distribution. Neocortical association regions, such as the prefrontal and cingulate cortices, demonstrated a higher density, and exhibited a unique laminar pattern of CB1-IR axons, compared with primary sensory and motor cortices. Similar regional and laminar distributions of CB1-IR axons were also present in the human neocortex. CB1-IR axons had more prominent varicosities in human tissue, but this difference appeared to represent a postmortem effect as similar morphological features increased in unperfused monkey tissue as a function of postmortem interval. In electron microscopy studies of perfused monkey prefrontal cortex, CB1 immunoreactivity was predominantly found in axon terminals that exclusively formed symmetric synapses. The high density, distinctive laminar distribution, and localization to inhibitory terminals of CB1 receptors in primate higher-order association regions suggests that the CB1 receptor may play a critical role in the circuitry that subserves cognitive functions such as those that are disturbed in schizophrenia.
Cerebral Cortex – Oxford University Press
Published: Feb 8, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.