Access the full text.
Sign up today, get DeepDyve free for 14 days.
Stephen Smith (2002)
Fast robust automated brain extractionHuman Brain Mapping, 17
P. Kickingereder, A. Radbruch, Sina Burth, A. Wick, S. Heiland, H. Schlemmer, W. Wick, M. Bendszus, D. Bonekamp (2016)
MR Perfusion-derived Hemodynamic Parametric Response Mapping of Bevacizumab Efficacy in Recurrent Glioblastoma.Radiology, 279 2
M. Law, Stanley Yang, J. Babb, E. Knopp, J. Golfinos, D. Zagzag, G. Johnson (2004)
Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade.AJNR. American journal of neuroradiology, 25 5
E. Velazquez, Raphael Meier, William Jr, B. Alexander, R. Wiest, S. Bauer, D. Gutman, M. Reyes, H. Aerts (2015)
Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI featuresScientific Reports, 5
S. Higano, Xia Yun, T. Kumabe, Mika Watanabe, S. Mugikura, A. Umetsu, A. Sato, Takayuki Yamada, Shoki Takahashi (2006)
Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis.Radiology, 241 3
M. Gonen, G. Heller (2005)
Concordance probability and discriminatory power in proportional hazards regressionBiometrika, 92
A. Hilario, J. Sepúlveda, Á. Pérez-Núñez, E. Salvador, J. Millán, A. Hernández-Laín, V. Rodriguez-Gonzalez, A. Lagares, A. Ramos (2014)
A Prognostic Model Based on Preoperative MRI Predicts Overall Survival in Patients with Diffuse GliomasAmerican Journal of Neuroradiology, 35
R. Murakami, T. Sugahara, Hideo Nakamura, T. Hirai, M. Kitajima, Y. Hayashida, Y. Baba, N. Oya, J. Kuratsu, Y. Yamashita (2007)
Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging.Radiology, 243 2
Joonmi Oh, R. Henry, A. Pirzkall, Ying Lu, Xiaojuan Li, I. Catalaa, Susan Chang, W. Dillon, S. Nelson (2004)
Survival analysis in patients with glioblastoma multiforme: Predictive value of choline‐to‐n‐acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volumeJournal of Magnetic Resonance Imaging, 19
M. Jenkinson, Stephen Smith (2001)
A global optimisation method for robust affine registration of brain imagesMedical image analysis, 5 2
R. Jain, L. Poisson, J. Narang, D. Gutman, L. Scarpace, Scott Hwang, C. Holder, M. Wintermark, R. Colen, J. Kirby, J. Freymann, D. Brat, C. Jaffe, T. Mikkelsen (2013)
Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers.Radiology, 267 1
M. Essig, M. Shiroishi, T. Nguyen, M. Saake, J. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, À. Rovira, M. Wintermark, M. Law (2013)
Perfusion MRI: the five most frequently asked technical questions.AJR. American journal of roentgenology, 200 1
Yoon Choi, Daigeun Kim, Seung-Koo Lee, Jong-Hee Chang, S. Kang, E. Kim, S. Kim, Tyler Rim, S. Ahn (2015)
The Added Prognostic Value of Preoperative Dynamic Contrast-Enhanced MRI Histogram Analysis in Patients with Glioblastoma: Analysis of Overall and Progression-Free SurvivalAmerican Journal of Neuroradiology, 36
B. Ellingson (2014)
Radiogenomics and Imaging Phenotypes in Glioblastoma: Novel Observations and Correlation with Molecular CharacteristicsCurrent Neurology and Neuroscience Reports, 15
S. Bisdas, M. Kirkpatrick, Pierre Giglio, C. Welsh, M. Spampinato, Z. Rumboldt (2009)
Cerebral Blood Volume Measurements by Perfusion-Weighted MR Imaging in Gliomas: Ready for Prime Time in Predicting Short-Term Outcome and Recurrent Disease?American Journal of Neuroradiology, 30
M. Jenkinson, P. Bannister, M. Brady, Stephen Smith (2002)
Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain ImagesNeuroImage, 17
M. Law, R. Young, J. Babb, N. Peccerelli, S. Chheang, M. Gruber, Douglas Miller, J. Golfinos, D. Zagzag, G. Johnson (2008)
Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging.Radiology, 247 2
P. Kickingereder, B. Wiestler, F. Sahm, S. Heiland, Matthias Roethke, H. Schlemmer, W. Wick, M. Bendszus, A. Radbruch (2014)
Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging.Radiology, 272 3
E. Zacharaki, N. Morita, P. Bhatt, D. O’Rourke, E. Melhem, C. Davatzikos (2012)
Survival Analysis of Patients with High-Grade Gliomas Based on Data Mining of Imaging VariablesAmerican Journal of Neuroradiology, 33
D. Bonekamp, Katerina Deike, B. Wiestler, W. Wick, M. Bendszus, A. Radbruch, S. Heiland (2015)
Association of overall survival in patients with newly diagnosed glioblastoma with contrast‐enhanced perfusion MRI: Comparison of intraindividually matched T1‐ and T2*‐based bolus techniquesJournal of Magnetic Resonance Imaging, 42
H. Aerts, E. Velazquez, R. Leijenaar, C. Parmar, P. Grossmann, Sara Cavalho, J. Bussink, R. Monshouwer, Benjamin Haibe-Kains, D. Rietveld, F. Hoebers, M. Rietbergen, C. Leemans, A. Dekker, John Quackenbush, R. Gillies, P. Lambin (2014)
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approachNature Communications, 5
M. Spampinato, C. Schiarelli, A. Cianfoni, Pierre Giglio, C. Welsh, S. Bisdas, Z. Rumboldt (2013)
Correlation between Cerebral Blood Volume Measurements by Perfusion-Weighted Magnetic Resonance Imaging and Two-Year Progression-Free Survival in GliomasThe Neuroradiology Journal, 26
S. Bisdas, T. Naegele, R. Ritz, Artemisia Dimostheni, C. Pfannenberg, M. Reimold, T. Koh, U. Ernemann (2011)
Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging.Academic radiology, 18 5
S. Mills, T. Patankar, H. Haroon, D. Baleriaux, R. Swindell, A. Jackson (2006)
Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma?AJNR. American journal of neuroradiology, 27 4
W. Pope, Hyun Kim, J. Huo, J. Alger, Matthew Brown, D. Gjertson, Victor Sai, J. Young, L. Tekchandani, T. Cloughesy, P. Mischel, A. Lai, P. Nghiemphu, S. Rahmanuddin, J. Goldin (2009)
Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment.Radiology, 252 1
Rajan Jain, R. Jain, L. Poisson, D. Gutman, L. Scarpace, Scott Hwang, C. Holder, M. Wintermark, A. Rao, R. Colen, J. Kirby, J. Freymann, C. Jaffe, T. Mikkelsen, A. Flanders (2014)
Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor.Radiology, 272 2
P. Kickingereder, B. Wiestler, Sina Burth, A. Wick, M. Nowosielski, S. Heiland, H. Schlemmer, W. Wick, M. Bendszus, A. Radbruch (2015)
Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma.Neuro-oncology, 17 8
H. Kim, C. Suh, Namkug Kim, C. Choi, Soon Kim (2014)
Histogram Analysis of Intravoxel Incoherent Motion for Differentiating Recurrent Tumor from Treatment Effect in Patients with Glioblastoma: Initial Clinical ExperienceAmerican Journal of Neuroradiology, 35
Paul Yushkevich, J. Piven, H. Hazlett, R. Smith, Sean Ho, J. Gee, G. Gerig (2006)
User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliabilityNeuroImage, 31
Yi Cui, K. Tha, S. Terasaka, S. Yamaguchi, Jeff Wang, K. Kudo, L. Xing, H. Shirato, Ruijiang Li (2016)
Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images.Radiology, 278 2
S. Saraswathy, Forrest Crawford, K. Lamborn, A. Pirzkall, Susan Chang, S. Cha, S. Nelson (2008)
Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapyJournal of Neuro-Oncology, 91
M. Law, Sarah Oh, J. Babb, E. Wang, M. Inglese, D. Zagzag, E. Knopp, G. Johnson (2006)
Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response.Radiology, 238 2
B. Ellingson, T. Zaw, T. Cloughesy, K. Naeini, S. Lalezari, S. Mong, A. Lai, P. Nghiemphu, W. Pope (2012)
Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)‐MRI estimates of cerebral blood volume (CBV) in human gliomasJournal of Magnetic Resonance Imaging, 35
M. Mazurowski, Jing Zhang, K. Peters, H. Hobbs (2014)
Computer-extracted MR imaging features are associated with survival in glioblastoma patientsJournal of Neuro-Oncology, 120
M. Essig, T. Nguyen, M. Shiroishi, M. Saake, J. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, À. Rovira, M. Wintermark, M. Law (2013)
Perfusion MRI: the five most frequently asked clinical questions.AJR. American journal of roentgenology, 201 3
P. Wangaryattawanich, M. Hatami, Jixin Wang, Ginu Thomas, A. Flanders, J. Kirby, M. Wintermark, Erich Huang, A. Bakhtiari, M. Luedi, S. Hashmi, D. Rubin, James Chen, Scott Hwang, J. Freymann, C. Holder, P. Zinn, R. Colen (2015)
Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival.Neuro-oncology, 17 11
R. Barajas, J. Hodgson, Jamie Chang, Scott Vandenberg, R. Yeh, A. Parsa, Michael McDermott, Mitchel Berger, William Dillon, S. Cha (2010)
Glioblastoma multiforme regional genetic and cellular expression patterns: influence on anatomic and physiologic MR imaging.Radiology, 254 2
M. Law, Sarah Oh, G. Johnson, J. Babb, D. Zagzag, J. Golfinos, P. Kelly (2006)
Perfusion Magnetic Resonance Imaging Predicts Patient Outcome as an Adjunct to Histopathology: A Second Reference Standard in the Surgical and Nonsurgical Treatment of Low-grade GliomasNeurosurgery, 58
Kai Wang, Yin-yan Wang, Xing Fan, Jiangfei Wang, Guilin Li, Jieling Ma, Jun Ma, T. Jiang, Jianping Dai (2016)
Radiological features combined with IDH1 status for predicting the survival outcome of glioblastoma patients.Neuro-oncology, 18 4
T. Hirai, R. Murakami, Hideo Nakamura, M. Kitajima, H. Fukuoka, A. Sasao, M. Akter, Y. Hayashida, R. Toya, N. Oya, K. Awai, K. Iyama, J. Kuratsu, Y. Yamashita (2008)
Prognostic Value of Perfusion MR Imaging of High-Grade Astrocytomas: Long-Term Follow-Up StudyAmerican Journal of Neuroradiology, 29
Haruka Itakura, A. Achrol, L. Mitchell, J. Loya, T. Liu, E. Westbroek, A. Feroze, S. Rodriguez, Sebastian Echegaray, T. Azad, K. Yeom, S. Napel, D. Rubin, Steven Chang, G. Harsh, O. Gevaert (2015)
Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activitiesScience Translational Medicine, 7
Forrest Crawford, Inas Khayal, Colleen McGue, S. Saraswathy, A. Pirzkall, S. Cha, K. Lamborn, Susan Chang, M. Berger, S. Nelson (2009)
Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBMJournal of Neuro-Oncology, 91
P. Kickingereder, F. Sahm, A. Radbruch, W. Wick, S. Heiland, A. Deimling, M. Bendszus, B. Wiestler (2015)
IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human gliomaScientific Reports, 5
Qiuting Wen, Laleh Jalilian, J. Lupo, A. Molinaro, Susan Chang, Jennifer Clarke, M. Prados, S. Nelson (2014)
Comparison of ADC metrics and their association with outcome for patients with newly diagnosed glioblastoma being treated with radiation therapy, temozolomide, erlotinib and bevacizumabJournal of Neuro-Oncology, 121
D. Bonekamp, K. Mouridsen, A. Radbruch, F. Kurz, Oliver Eidel, A. Wick, H. Schlemmer, W. Wick, M. Bendszus, L. Østergaard, P. Kickingereder (2017)
Assessment of tumor oxygenation and its impact on treatment response in bevacizumab-treated recurrent glioblastomaJournal of Cerebral Blood Flow & Metabolism, 37
Jae Kim, S. Choi, I. Ryoo, T. Yun, T. Kim, Se-Hoon Lee, Chul-Kee Park, Ji-hoon Kim, C. Sohn, Sung-Hye Park, I. Kim (2014)
Prognosis Prediction of Measurable Enhancing Lesion after Completion of Standard Concomitant Chemoradiotherapy and Adjuvant Temozolomide in Glioblastoma Patients: Application of Dynamic Susceptibility Contrast Perfusion and Diffusion-Weighted ImagingPLoS ONE, 9
W. Pope, Xin Qiao, Hyun Kim, A. Lai, P. Nghiemphu, X. Xue, B. Ellingson, D. Schiff, D. Aregawi, S. Cha, V. Puduvalli, Jing Wu, W. Yung, G. Young, J. Vredenburgh, D. Barboriak, L. Abrey, T. Mikkelsen, R. Jain, N. Paleologos, P. Rn, M. Prados, J. Goldin, P. Wen, T. Cloughesy (2012)
Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: a multi-center studyJournal of Neuro-Oncology, 108
G. Coban, S. Mohan, F. Kural, S. Wang, D. O’Rourke, Harish Poptani (2015)
Prognostic Value of Dynamic Susceptibility Contrast-Enhanced and Diffusion-Weighted MR Imaging in Patients with GlioblastomasAmerican Journal of Neuroradiology, 36
B. Ellingson, M. Bendszus, J. Boxerman, D. Barboriak, B. Erickson, M. Smits, S. Nelson, E. Gerstner, B. Alexander, G. Goldmacher, W. Wick, M. Vogelbaum, M. Weller, E. Galanis, Jayashree Kalpathy-Cramer, L. Shankar, P. Jacobs, W. Pope, Dewen Yang, C. Chung, M. Knopp, S. Cha, M. Bent, Susan Chang, W. Yung, T. Cloughesy, P. Wen, M. Gilbert (2015)
Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials.Neuro-oncology, 17 9
Leland Hu, Leland Hu, J. Eschbacher, A. Dueck, J. Heiserman, Seban Liu, J. Karis, Kris Smith, William Shapiro, D. Pinnaduwage, D. Pinnaduwage, S. Coons, P. Nakaji, J. Debbins, B. Feuerstein, L. Baxter (2012)
Correlations between Perfusion MR Imaging Cerebral Blood Volume, Microvessel Quantification, and Clinical Outcome Using Stereotactic Analysis in Recurrent High-Grade GliomaAmerican Journal of Neuroradiology, 33
M. Lev, Y. Ozsunar, Y. Ozsunar, J. Henson, Amjad Rasheed, G. Barest, G. Harsh, M. Fitzek, E. Chiocca, J. Rabinov, Andrew Csavoy, B. Rosen, F. Hochberg, P. Schaefer, R. Gonzalez (2004)
Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected].AJNR. American journal of neuroradiology, 25 2
Katerina Deike, B. Wiestler, Markus Graf, C. Reimer, R. Floca, P. Bäumer, P. Kickingereder, S. Heiland, H. Schlemmer, W. Wick, M. Bendszus, A. Radbruch (2016)
Prognostic value of combined visualization of MR diffusion and perfusion maps in glioblastomaJournal of Neuro-Oncology, 126
D. Hamstra, T. Chenevert, B. Moffat, T. Johnson, C. Meyer, S. Mukherji, D. Quint, S. Gebarski, Xiaoying Fan, C. Tsien, T. Lawrence, L. Junck, A. Rehemtulla, B. Ross (2005)
Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma.Proceedings of the National Academy of Sciences of the United States of America, 102 46
AbstractBackgroundThe purpose of this study was to determine the relevance of clinical data, apparent diffusion coefficient (ADC), and relative cerebral blood volume (rCBV) from dynamic susceptibility contrast (DSC) perfusion and the volume transfer constant (ktrans) from dynamic contrast-enhanced (DCE) perfusion for predicting overall survival (OS) and progression-free survival (PFS) in newly diagnosed treatment-naïve glioblastoma patients.MethodsPreoperative MR scans including standardized contrast-enhanced T1 (cT1), T2 - fluid-attenuated inversion recovery (FLAIR), ADC, DSC, and DCE of 125 patients with subsequent histopathologically confirmed glioblastoma were performed on a 3 Tesla MRI scanner. ADC, DSC, and DCE parameters were analyzed in semiautomatically segmented tumor volumes on contrast-enhanced (CE) cT1 and hyperintense signal changes on T2 FLAIR (ED). Univariate and multivariable Cox regression analyses including age, sex, extent of resection (EOR), and KPS were performed to assess the influence of each parameter on OS and PFS.ResultsUnivariate Cox regression analysis demonstrated a significant association of age, KPS, and EOR with PFS and age, KPS, EOR, lower ADC, and higher rCBV with OS. Multivariable analysis showed independent significance of male sex, KPS, EOR, and increased rCBVCE for PFS, and age, sex, KPS, and EOR for OS.ConclusionsMRI parameters help to predict OS in a univariate Cox regression analysis, and increased rCBVCE is associated with shorter PFS in the multivariable model. In summary, however, our findings suggest that the relevance of MRI parameters is outperformed by clinical parameters in a multivariable analysis, which limits their prognostic value for survival prediction at the time of initial diagnosis.
Neuro-Oncology – Oxford University Press
Published: Dec 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.