Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Brenna, W. Creasy, W. McBain, C. Soria (1988)
Nd:YAG laser microprobe system for Fourier‐transform ion cyclotron resonance mass spectrometryReview of Scientific Instruments, 59
P. Caravatti, M. Allemann (1991)
The ‘infinity cell’: A new trapped‐ion cell with radiofrequency covered trapping electrodes for fourier transform ion cyclotron resonance mass spectrometryJournal of Mass Spectrometry, 26
M. Pelletier, G. Kreier, J. Muller, D. Weil, M. Johnston, A. MarshalI (1988)
Laser microprobe fourier transform mass spectrometry. Preliminary results for feasibility and evaluationRapid Communications in Mass Spectrometry, 2
P. Kofel, M. Allemann, H. Kellerhals, K. Wanczek (1986)
Time-of-flight ICR spectrometryInternational Journal of Mass Spectrometry and Ion Processes, 72
L. Vaeck, R. Gijbels (1990)
Laser microprobe mass spectrometry: potential and limitations for inorganic and organic micro-analysisFresenius' Journal of Analytical Chemistry, 337
C. Lebrilla, I. Amster, R. McIver (1989)
External ion source FTMS instrument for analysis of high mass ionsInternational Journal of Mass Spectrometry and Ion Processes, 87
L. Vaeck, J. Bennett, Wim Lauwers, A. Vertes, R. Gijbels (1990)
Laser microprobe mass spectrometry: Possibilities and limitationsMicrochimica Acta, 102
L. Vaeck, P. Espen, F. Adams, R. Gijbels, W. Lauwers, E. Esmans (1989)
On the use of laser microprobe mass spectrometry for the analysis of organic biomolecules.Biomedical & environmental mass spectrometry, 18 8
L. Vaeck, J. Claereboudt, J. Waele, E. Esmans, R. Gijbels (1985)
Approach for structural interpretation of laser microprobe mass spectra of organic compoundsAnalytical Chemistry, 57
D. Holtkamp, G. Bayer, R. Holm (1991)
Laser micro mass analysis of bulk polymeric samplesMicrochimica Acta, 103
S. Beu, D. Laude (1991)
Ion trapping and manipulation in a tandem time-of-flight-Fourier transform mass spectrometerInternational Journal of Mass Spectrometry and Ion Processes, 104
J. Alford, P. Williams, D. Trevor, R. Smalley (1986)
Metal cluster ion cyclotron resonance. Combining supersonic metal cluster beam technology with FT-ICRInternational Journal of Mass Spectrometry and Ion Processes, 72
F. Bruynseels, R. Grieken (1986)
Recombination reactions and geometry effects in laser microprobe mass analysis studied with 12C/13C bilayersInternational Journal of Mass Spectrometry and Ion Processes, 74
R. McIver, R. Hunter, W. Bowers (1985)
Coupling a quadrupole mass spectrometer and a Fourier transform mass spectrometerInternational Journal of Mass Spectrometry and Ion Processes, 64
D. Hunt, J. Shabanowitz, R. McIver, R. Hunter, J. Syka (1985)
Ionization and mass analysis of nonvolatile compounds by particle bombardment tandem-quadrupole Fourier transform mass spectrometry.Analytical chemistry, 57 3
P. Kofel, T. McMahon (1990)
A high pressure external ion source for Fourier transform ion cyclotron resonance spectrometryInternational Journal of Mass Spectrometry and Ion Processes, 98
H. Vogt, H. Heinen, S. Meier, R. Wechsung (1981)
LAMMA 500 principle and technical description of the instrumentFresenius' Zeitschrift für analytische Chemie, 308
L. Vaeck, P. Espen, W. Jacob, R. Gijbels, W. Cautreels (1988)
In-depth limitation of the Lamma 500 for the in situ localization of organic compounds in biological embedded tissue samples.Biomedical & environmental mass spectrometry, 16 1-12
D. Hunt, J. Shabanowitz, J. Yates, P. Griffin, N. Zhu (1989)
Tamdem quadrupole fourier transform mass spectrometryAnalytica Chimica Acta, 225
S. Beu, D. Laude (1990)
Mechanism for an ion accumulation process in external source fourier transform mass spectrometersInternational Journal of Mass Spectrometry and Ion Processes, 97
P. Kofel, M. Allemann, H. Kellerhals, K. Wanczek (1985)
External generation of ions in ICR spectrometryInternational Journal of Mass Spectrometry and Ion Processes, 65
R. Cotter, J. Tabet (1983)
Laser desorption mass spectrometry: Mechanisms and applicationsInternational Journal of Mass Spectrometry and Ion Physics, 53
Laser microprobe mass spectrometry (LMMS) employs focused laser‐beam irradiation of solids and subsequent mass analysis of the ions produced. The technique is suitable for the local analysis of inorganic and organic constituents with a spatial resolution in the micrometer range. The Fourier transform mass spectrometer (FTMS) is an analyser of choice for LMMS because high mass resolution and accurate mass determination can be routinely achieved at adequate sensitivity. This paper describes the first LMMS instrument using FTMS with an external ion source. The design considerations and the experimental performance are described with respect to such analytical parameters as spatial resolution and sensitivity. A comparison between time‐of‐flight mass spectrometry and IT‐LMMS for diagnostic analysis of organic molecules is interpreted in terms of the ion formation processes. Finally, the analysis of a selected integrated circuit evidences the feasibility of local analysis with a spatial resolution of 5 μm.
Rapid Communications in Mass Spectrometry – Wiley
Published: Jan 1, 1993
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.