Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Disintegration of water drops in an electric field

Disintegration of water drops in an electric field <jats:p>The disintegration of drops in strong electric fields is believed to play an important part in the formation of thunderstorms, at least in those parts of them where no ice crystals are present. Zeleny showed experimentally that disintegration begins as a hydrodynamical instability, but his ideas about the mechanics of the situation rest on the implicit assumption that instability occurs when the internal pressure is the same as that outside the drop. It is shown that this assumption is false and that instability of an elongated drop would not occur unless a pressure difference existed. When this error is corrected it is found that a drop, elongated by an electric field, becomes unstable when its length is 1.9 times its equatorial diameter, and the calculated critical electric field agrees with laboratory experiments to within 1 %. When the drop becomes unstable the ends develop obtuse-angled conical points from which axial jets are projected but the stability calculations give no indication of the mechanics of this process. It is shown theoretically that a conical interface between two fluids can exist in equilibrium in an electric field, but only when the cone has a semi-vertical angle 49.3°. Apparatus was constructed for producing the necessary field, and photographs show that conical oil/water interfaces and soap films can be produced at the calculated voltage and that their semi-vertical angles are very close to 49.3°. The photographs give an indication of how the axial jets are produced but no complete analytical description of the process is attempted.</jats:p> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences CrossRef

Disintegration of water drops in an electric field

Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences , Volume 280 (1382): 383-397 – Jul 28, 1964

Disintegration of water drops in an electric field


Abstract

<jats:p>The disintegration of drops in strong electric fields is believed to play an important part in the formation of thunderstorms, at least in those parts of them where no ice crystals are present. Zeleny showed experimentally that disintegration begins as a hydrodynamical instability, but his ideas about the mechanics of the situation rest on the implicit assumption that instability occurs when the internal pressure is the same as that outside the drop. It is shown that this assumption is false and that instability of an elongated drop would not occur unless a pressure difference existed. When this error is corrected it is found that a drop, elongated by an electric field, becomes unstable when its length is 1.9 times its equatorial diameter, and the calculated critical electric field agrees with laboratory experiments to within 1 %. When the drop becomes unstable the ends develop obtuse-angled conical points from which axial jets are projected but the stability calculations give no indication of the mechanics of this process. It is shown theoretically that a conical interface between two fluids can exist in equilibrium in an electric field, but only when the cone has a semi-vertical angle 49.3°. Apparatus was constructed for producing the necessary field, and photographs show that conical oil/water interfaces and soap films can be produced at the calculated voltage and that their semi-vertical angles are very close to 49.3°. The photographs give an indication of how the axial jets are produced but no complete analytical description of the process is attempted.</jats:p>

Loading next page...
 
/lp/crossref/disintegration-of-water-drops-in-an-electric-field-eft6QKVpZk

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CrossRef
ISSN
0080-4630
DOI
10.1098/rspa.1964.0151
Publisher site
See Article on Publisher Site

Abstract

<jats:p>The disintegration of drops in strong electric fields is believed to play an important part in the formation of thunderstorms, at least in those parts of them where no ice crystals are present. Zeleny showed experimentally that disintegration begins as a hydrodynamical instability, but his ideas about the mechanics of the situation rest on the implicit assumption that instability occurs when the internal pressure is the same as that outside the drop. It is shown that this assumption is false and that instability of an elongated drop would not occur unless a pressure difference existed. When this error is corrected it is found that a drop, elongated by an electric field, becomes unstable when its length is 1.9 times its equatorial diameter, and the calculated critical electric field agrees with laboratory experiments to within 1 %. When the drop becomes unstable the ends develop obtuse-angled conical points from which axial jets are projected but the stability calculations give no indication of the mechanics of this process. It is shown theoretically that a conical interface between two fluids can exist in equilibrium in an electric field, but only when the cone has a semi-vertical angle 49.3°. Apparatus was constructed for producing the necessary field, and photographs show that conical oil/water interfaces and soap films can be produced at the calculated voltage and that their semi-vertical angles are very close to 49.3°. The photographs give an indication of how the axial jets are produced but no complete analytical description of the process is attempted.</jats:p>

Journal

Proceedings of the Royal Society of London. Series A. Mathematical and Physical SciencesCrossRef

Published: Jul 28, 1964

References