Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Electrospray emission from nonwetting flat dielectric surfaces.

Electrospray emission from nonwetting flat dielectric surfaces. Electrosprays are devices in which nanometer sized droplets and/or solvated ions are electrically extracted from a liquid surface and accelerated to high velocities. They are usually constructed from conductive capillaries with one of the ends tapered down to a sharp tip with the purpose of enhancing the local electric field that produces the instability that develops into the Taylor cone structure from which emission occurs. In an alternative configuration, the conductive needles are replaced by small holes through a dielectric, nonwetting flat block. An electrostatic model shows that if the emitter material has low dielectric constant then the local electric field near the emission site is enhanced in a very similar way as with sharp metallic needles. Furthermore, the combination of the nonwetting property of the material and the sharp corner formed in the hole-surface interface effectively anchors the Taylor cone to the edge of the hole, thus simplifying the process of manufacturing. The possible microfabrication of this configuration makes it especially attractive for producing arrays of large numbers of individual emitters. Such arrays may find use as space propulsion thrusters and in the analytical industry to improve the characteristics of mass-spectrometric analyses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of colloid and interface science Pubmed

Electrospray emission from nonwetting flat dielectric surfaces.

Journal of colloid and interface science , Volume 276 (2): -382 – Jun 13, 2006

Electrospray emission from nonwetting flat dielectric surfaces.


Abstract

Electrosprays are devices in which nanometer sized droplets and/or solvated ions are electrically extracted from a liquid surface and accelerated to high velocities. They are usually constructed from conductive capillaries with one of the ends tapered down to a sharp tip with the purpose of enhancing the local electric field that produces the instability that develops into the Taylor cone structure from which emission occurs. In an alternative configuration, the conductive needles are replaced by small holes through a dielectric, nonwetting flat block. An electrostatic model shows that if the emitter material has low dielectric constant then the local electric field near the emission site is enhanced in a very similar way as with sharp metallic needles. Furthermore, the combination of the nonwetting property of the material and the sharp corner formed in the hole-surface interface effectively anchors the Taylor cone to the edge of the hole, thus simplifying the process of manufacturing. The possible microfabrication of this configuration makes it especially attractive for producing arrays of large numbers of individual emitters. Such arrays may find use as space propulsion thrusters and in the analytical industry to improve the characteristics of mass-spectrometric analyses.

Loading next page...
 
/lp/pubmed/electrospray-emission-from-nonwetting-flat-dielectric-surfaces-eqwAmbUuNl

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0021-9797
DOI
10.1016/j.jcis.2004.04.017
pmid
15271567

Abstract

Electrosprays are devices in which nanometer sized droplets and/or solvated ions are electrically extracted from a liquid surface and accelerated to high velocities. They are usually constructed from conductive capillaries with one of the ends tapered down to a sharp tip with the purpose of enhancing the local electric field that produces the instability that develops into the Taylor cone structure from which emission occurs. In an alternative configuration, the conductive needles are replaced by small holes through a dielectric, nonwetting flat block. An electrostatic model shows that if the emitter material has low dielectric constant then the local electric field near the emission site is enhanced in a very similar way as with sharp metallic needles. Furthermore, the combination of the nonwetting property of the material and the sharp corner formed in the hole-surface interface effectively anchors the Taylor cone to the edge of the hole, thus simplifying the process of manufacturing. The possible microfabrication of this configuration makes it especially attractive for producing arrays of large numbers of individual emitters. Such arrays may find use as space propulsion thrusters and in the analytical industry to improve the characteristics of mass-spectrometric analyses.

Journal

Journal of colloid and interface sciencePubmed

Published: Jun 13, 2006

There are no references for this article.