Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Elevated ROS depress mitochondrial oxygen utilization efficiency in cardiomyocytes during acute hypoxia

Elevated ROS depress mitochondrial oxygen utilization efficiency in cardiomyocytes during acute... Mitochondria are important sites for the production of ATP and the generation of ROS in cells. However, whether acute hypoxia increases ROS generation in cells or affects ATP production remains unclear, and therefore, monitoring the changes in ATP and ROS in living cells in real time is important. In this study, cardiomyocytes were transfected with RoGFP for ROS detection and MitGO-Ateam2 for ATP detection, whereby ROS and ATP production in cardiomyocytes were respectively monitored in real time. Furthermore, the oxygen consumption rate (OCR) of cardiomyocytes was measured. Similar results were produced for adult and neonatal rat cardiomyocytes. Hypoxia (1% O2) reduced the basal OCR, ATP-linked OCR, and maximal OCR in cardiomyocytes compared with these OCR levels in the cardiomyocytes in the normoxic group (21% O2). However, ATP-linked OCR, normalized to maximal OCR, was increased during hypoxia, indicating that the electron leakage of complex III exacerbated the increase of ATP-linked oxygen consumption during hypoxia and vice versa. Combined with the result that cardiomyocytes expressing MitGO-Ateam2 showed a significant decrease in ATP production during hypoxia compared with that of normoxic group, acute hypoxia might depress the mitochondrial oxygen utilization efficiency of the cardiomyocytes. Moreover, cardiomyocytes expressing Cyto-RoGFP or IMS-RoGFP showed an increase in ROS generation in the cytosol and the mitochondrial intermembrane space (IMS) during hypoxia. All of these results indicate that acute hypoxia generated more ROS in complex III and increased mitochondrial oxygen consumption, leading to less ATP production. In conclusion, acute hypoxia depresses the mitochondrial oxygen utilization efficiency by decreasing ATP production and increasing oxygen consumption as a result of the enhanced ROS generation at mitochondrial complex III. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pflügers Archiv European Journal of Physiologyl of Physiology Springer Journals

Elevated ROS depress mitochondrial oxygen utilization efficiency in cardiomyocytes during acute hypoxia

Loading next page...
 
/lp/springer-journals/elevated-ros-depress-mitochondrial-oxygen-utilization-efficiency-in-fllZCwBXYJ

References (31)

Publisher
Springer Journals
Copyright
Copyright © Springer-Verlag GmbH Germany, part of Springer Nature 2020
ISSN
0031-6768
eISSN
1432-2013
DOI
10.1007/s00424-020-02463-5
Publisher site
See Article on Publisher Site

Abstract

Mitochondria are important sites for the production of ATP and the generation of ROS in cells. However, whether acute hypoxia increases ROS generation in cells or affects ATP production remains unclear, and therefore, monitoring the changes in ATP and ROS in living cells in real time is important. In this study, cardiomyocytes were transfected with RoGFP for ROS detection and MitGO-Ateam2 for ATP detection, whereby ROS and ATP production in cardiomyocytes were respectively monitored in real time. Furthermore, the oxygen consumption rate (OCR) of cardiomyocytes was measured. Similar results were produced for adult and neonatal rat cardiomyocytes. Hypoxia (1% O2) reduced the basal OCR, ATP-linked OCR, and maximal OCR in cardiomyocytes compared with these OCR levels in the cardiomyocytes in the normoxic group (21% O2). However, ATP-linked OCR, normalized to maximal OCR, was increased during hypoxia, indicating that the electron leakage of complex III exacerbated the increase of ATP-linked oxygen consumption during hypoxia and vice versa. Combined with the result that cardiomyocytes expressing MitGO-Ateam2 showed a significant decrease in ATP production during hypoxia compared with that of normoxic group, acute hypoxia might depress the mitochondrial oxygen utilization efficiency of the cardiomyocytes. Moreover, cardiomyocytes expressing Cyto-RoGFP or IMS-RoGFP showed an increase in ROS generation in the cytosol and the mitochondrial intermembrane space (IMS) during hypoxia. All of these results indicate that acute hypoxia generated more ROS in complex III and increased mitochondrial oxygen consumption, leading to less ATP production. In conclusion, acute hypoxia depresses the mitochondrial oxygen utilization efficiency by decreasing ATP production and increasing oxygen consumption as a result of the enhanced ROS generation at mitochondrial complex III.

Journal

Pflügers Archiv European Journal of Physiologyl of PhysiologySpringer Journals

Published: Sep 17, 2020

There are no references for this article.