Access the full text.
Sign up today, get DeepDyve free for 14 days.
Hangxun Xu, S. Xie, N. Ding, Bei-bei Liu, Y. Shang, C. Chen (2006)
Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel prepared by radiated polymer gel methodElectrochimica Acta, 51
Byoungwoo Kang, G. Ceder (2009)
Battery materials for ultrafast charging and dischargingNature, 458
G. Kresse, J. Furthmüller (1996)
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Physical review. B, Condensed matter, 54 16
H. Xia, Y. Meng, Li Lu, G. Ceder (2007)
Electrochemical Properties of Nonstoichiometric LiNi0.5Mn1.5O4 − δ Thin-Film Electrodes Prepared by Pulsed Laser DepositionJournal of The Electrochemical Society, 154
M. Thackeray, W. David, P. Bruce, J. Goodenough (1983)
Lithium insertion into manganese spinelsMaterials Research Bulletin, 18
Jianming Zheng, Jie Xiao, Xiqian Yu, L. Kovarik, Meng Gu, Fredrick Omenya, Xilin Chen, Xiao-Qing Yang, J. Liu, G. Graff, M. Whittingham, Ji‐Guang Zhang (2012)
Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.Physical chemistry chemical physics : PCCP, 14 39
J. Tarascon, W. Mckinnon, F. Coowar, T. Bowmer, G. Amatucci, D. Guyomard (1994)
Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4]Journal of The Electrochemical Society, 141
Lifen Xiao, Yanqiang Zhao, Yanyan Yang, X. Ai, Hanxi Yang, Yuliang Cao (2008)
Electrochemical properties of nano-crystalline LiNi0.5Mn1.5O4 synthesized by polymer-pyrolysis methodJournal of Solid State Electrochemistry, 12
G. Kresse, D. Joubert (1999)
From ultrasoft pseudopotentials to the projector augmented-wave methodPhysical Review B, 59
N. Ueda, T. Omata, Naoko Hikuma, K. Ueda, H. Mizoguchi, T. Hashimoto, H. Kawazoe (1992)
New oxide phase with wide band gap and high electroconductivity, MgIn2O4Applied Physics Letters, 61
M. Gu, I. Belharouak, Jianming Zheng, Huimin Wu, Jie Xiao, A. Genç, K. Amine, S. Thevuthasan, D. Baer, Ji‐Guang Zhang, N. Browning, Jun Liu, Chongmin Wang (2012)
Formation of the spinel phase in the layered composite cathode used in Li-ion batteries.ACS nano, 7 1
S. Oh, K. Chung, S. Jeon, Chang Kim, W. Cho, B. Cho (2009)
Structural and electrochemical investigations on the LiNi0.5−xMn1.5−yMx+yO4 (M = Cr, Al, Zr) compound for 5 V cathode materialJournal of Alloys and Compounds, 469
J. Cabana, Honghe Zheng, A. Shukla, Chunjoong Kim, V. Battaglia, M. Kunduraci (2011)
Comparison of the Performance of LiNi1/2Mn3/2O4 with Different MicrostructuresJournal of The Electrochemical Society, 158
Guo-qiang Liu, L. Wen, X. Wang, Ma Beiyue (2011)
Effect of the impurity LixNi1−xO on the electrochemical properties of 5 V cathode material LiNi0.5Mn1.5O4Journal of Alloys and Compounds, 509
J. Arrebola, Á. Caballero, L. Hernán, J. Morales (2008)
PMMA-assisted synthesis of Li1−xNi0.5Mn1.5O4−δ for high-voltage lithium batteries with expanded rate capability at high cycling temperaturesJournal of Power Sources, 180
Jung-Hyun Kim, Seung‐Taek Myung, Yang‐Kook Sun (2004)
Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary batteryElectrochimica Acta, 49
Eunseok Lee (2012)
Revealing the coupled cation interactions behind the electrochemicalprofile of LixNi0:5Mn1:5O4
R. Santhanam, B. Rambabu (2010)
Research progress in high voltage spinel LiNi0.5Mn1.5O4 materialJournal of Power Sources, 195
J. Perdew, A. Ruzsinszky, G. Csonka, Oleg Vydrov, G. Scuseria, L. Constantin, Xiaolan Zhou, K. Burke (2007)
Restoring the density-gradient expansion for exchange in solids and surfaces.Physical review letters, 100 13
Bo Xu, S. Meng (2010)
Factors affecting Li mobility in spinel LiMn2O4—A first-principles study by GGA and GGA+U methodsJournal of Power Sources, 195
Ming-Che Yang, Bo Xu, Ju-Hsiang Cheng, Chun-Jern Pan, B. Hwang, Y. Meng (2010)
Electronic, Structural, and Electrochemical Properties of LiNixCuyMn2–x–yO4 (0 < x < 0.5, 0 < y < 0.5) High-Voltage Spinel MaterialsChemistry of Materials, 23
Jung-Hyun Kim, Seung‐Taek Myung, C. Yoon, Sung-Goon Kang, Yang‐Kook Sun (2004)
Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332Chemistry of Materials, 16
X. Fang, N. Ding, Xuyong Feng, Yalin Lu, C. Chen (2009)
Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: Electrochemical performance, diffusion coefficient and capacity loss mechanismElectrochimica Acta, 54
K. Amine, Jun Liu, I. Belharouak, Sun‐Ho Kang, I. Bloom, D. Vissers, G. Henriksen (2005)
Advanced cathode materials for high-power applicationsJournal of Power Sources, 146
Li-wen Ma, Bai-zhen Chen, Xi-chang Shi, Wen Zhang, Kun Zhang (2010)
Stability and Li+ extraction/adsorption properties of LiMxMn2−xO4 (M = Ni, Al, Ti; 0 ≤ x ≤ 1) in aqueous solutionColloids and Surfaces A: Physicochemical and Engineering Aspects, 369
V. Stevanović, Mayeul d'Avezac, A. Zunger (2011)
Universal electrostatic origin of cation ordering in A2BO4 spinel oxides.Journal of the American Chemical Society, 133 30
J. Cabana, Sun‐Ho Kang, Christopher Johnson, M. Thackeray, C. Grey (2009)
Structural and Electrochemical Characterization of Composite Layered-Spinel Electrodes Containing Ni and Mn for Li-Ion BatteriesJournal of The Electrochemical Society, 156
Jian Gao, Jianjun Li, Changyin Jiang, C. Wan (2010)
Controlled Preparation and Characterization of Spherical LiNi0.5Mn1.5O4 Cathode Material for Lithium-Ion BatteriesJournal of The Electrochemical Society, 157
T. Paudel, A. Zakutayev, S. Lany, Mayeul d'Avezac, A. Zunger (2011)
Doping Rules and Doping Prototypes in A2BO4 Spinel OxidesAdvanced Functional Materials, 21
A. Becke (1993)
Density-functional thermochemistry. III. The role of exact exchangeJournal of Chemical Physics, 98
H. O’Neill, A. Navrotsky (1983)
Simple spinels; crystallographic parameters, cation radii, lattice energies, and cation distributionAmerican Mineralogist, 68
P. Bruce, B. Scrosati, J. Tarascon (2008)
Nanomaterials for rechargeable lithium batteries.Angewandte Chemie, 47 16
Dongqiang Liu, Jiantao Han, J. Goodenough (2010)
Structure, morphology, and cathode performance of Li1−x[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acidJournal of Power Sources, 195
Liping Wang, Hong Li, Xuejie Huang, E. Baudrin (2011)
A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”Solid State Ionics, 193
T. Omata, N. Ueda, K. Ueda, H. Kawazoe (1994)
New ultraviolet‐transport electroconductive oxide, ZnGa2O4 spinelApplied Physics Letters, 64
K. Ariyoshi, Y. Maeda, T. Kawai, T. Ohzuku (2011)
Effect of Primary Particle Size upon Polarization and Cycling Stability of 5-V Lithium Insertion Material of Li [ Ni1 ∕ 2Mn3 ∕ 2 ] O4Journal of The Electrochemical Society, 158
M. Kerlau, M. Marcinek, V. Srinivasan, R. Kostecki (2007)
Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion BatteriesLawrence Berkeley National Laboratory
T. Bredow, K. Jug, R. Evarestov (2006)
Electronic and magnetic structure of ScMnO3physica status solidi (b), 243
I. Hase, S. Ikeda, N. Shirakawa, J. Stalick (2003)
Electronic Structure of Sr2MoO4Journal of Low Temperature Physics, 131
Yonggao Xia, Hongyu Wang, Qing Zhang, Hiroyoshi Nakamura, H. Noguchi, M. Yoshio (2007)
Oxygen deficiency, a key factor in controlling the cycle performance of Mn-spinel cathode for lithium-ion batteriesJournal of Power Sources, 166
C. Windisch, K. Ferris, G. Exarhos (2001)
Synthesis and characterization of transparent conducting oxide cobalt–nickel spinel filmsJournal of Vacuum Science and Technology, 19
B. Ammundsen, J. Roziere, M. Islam (1997)
Atomistic Simulation Studies of Lithium and Proton Insertion in Spinel Lithium ManganatesJournal of Physical Chemistry B, 101
Chengteh Lee, Weitao Yang, R. Parr (1988)
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Physical review. B, Condensed matter, 37 2
P. Blöchl (1994)
Projector augmented-wave method.Physical review. B, Condensed matter, 50 24
B. Markovsky, Y. Talyossef, G. Salitra, D. Aurbach, Hyeong-Jin Kim, Seung-Don Choi (2004)
Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteriesElectrochemistry Communications, 6
B. Hwang, Y. Wu, M. Venkateswarlu, M. Cheng, R. Santhanam (2009)
Influence of synthesis conditions on electrochemical properties of high-voltage Li1.02Ni0.5Mn1.5O4 spinel cathode materialJournal of Power Sources, 193
R. Alcántara, M. Jaraba, P. Lavela, J. Tirado, P. Biensan, A. Guibert, C. Jordy, J. Pérès (2003)
Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4 Spinel Oxides for 5-V Cathode Materials.ChemInform, 34
T. Omata, N. Ueda, Naoko Hikuma, K. Ueda, H. Mizoguchi, T. Hashimoto, H. Kawazoe (1993)
New oxide phase with wide band gap and high electroconductivity CdGa2O4 spinelApplied Physics Letters, 62
T. Arunkumar, A. Manthiram (2005)
Influence of Lattice Parameter Differences on the Electrochemical Performance of the 5 V Spinel LiMn1.5 − y Ni0.5 − z M y + z O4 (M = Li , Mg, Fe, Co, and Zn)Electrochemical and Solid State Letters, 8
K. Shaju, P. Bruce (2008)
Nano-LiNi(0.5)Mn(1.5)O(4) spinel: a high power electrode for Li-ion batteries.Dalton transactions, 40
Jie Xiao, Xilin Chen, P. Sushko, M. Sushko, L. Kovarik, Jijun Feng, Z. Deng, Jianming Zheng, G. Graff, Z. Nie, D. Choi, Jun Liu, Ji‐Guang Zhang, M. Whittingham (2012)
High‐Performance LiNi0.5Mn1.5O4 Spinel Controlled by Mn3+ Concentration and Site DisorderAdvanced Materials, 24
A. Armstrong, M. Holzapfel, P. Novák, C. Johnson, Sun‐Ho Kang, M. Thackeray, P. Bruce (2006)
Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2.Journal of the American Chemical Society, 128 26
This study presents a microscopic model for the correlation between the concentration of oxygen vacancies and voltage suppression in high voltage spinel cathodes for Li‐ion batteries. Using first principles simulations, it is shown that neutral oxygen vacancies in LiNi0.5Mn1.5O4‐δ promote substitutional Ni/Mn disorder and the formation of Ni‐rich and Ni‐poor regions. The former trap oxygen vacancies, while the latter trap electrons associated with these vacancies. This leads to the creation of deep and shallow Mn3+ states and affects the stability of the lattice Li ions. Together, these two factors result in a characteristic profile of the voltage dependence on Li content. This insight provides guidance for mitigating the voltage suppression in LiNi0.5Mn1.5O4 and other cathodes.
Advanced Functional Materials – Wiley
Published: Nov 26, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.