Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Scott, Hong Yan, R. Hancock (1999)
Biological Properties of Structurally Related α-Helical Cationic Antimicrobial PeptidesInfection and Immunity, 67
L. Nguyen, D. Schibli, H. Vogel (2005)
Structural studies and model membrane interactions of two peptides derived from bovine lactoferricinJournal of Peptide Science, 11
L. Bagella, M. Scocchi, M. Zanetti (1995)
cDNA sequences of three sheep myeloid cathelicidinsFEBS Letters, 376
Y. Xiong, Kasturi Mukhopadhyay, M. Yeaman, J. Adler-Moore, A. Bayer (2005)
Functional Interrelationships between Cell Membrane and Cell Wall in Antimicrobial Peptide-Mediated Killing of Staphylococcus aureusAntimicrobial Agents and Chemotherapy, 49
M. Zanetti, R. Gennaro, D. Romeo (1995)
Cathelicidins: a novel protein family with a common proregion and a variable C‐terminal antimicrobial domainFEBS Letters, 374
R. Gallo, Katherine Kim, M. Bernfield, C. Kozak, M. Zanetti, L. Merluzzi, R. Gennaro (1997)
Identification of CRAMP, a Cathelin-related Antimicrobial Peptide Expressed in the Embryonic and Adult Mouse*The Journal of Biological Chemistry, 272
C. Park, Jae Lee, I. Park, Mi Kim, S. Kim (1997)
A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatusFEBS Letters, 411
K. Brogden (2005)
Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?Nature Reviews Microbiology, 3
M. Mangoni, N. Papo, D. Barra, M. Simmaco, A. Bozzi, A. Giulio, A. Rinaldi (2004)
Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli.The Biochemical journal, 380 Pt 3
Chengquan Zhao, Lide Liu, R. Lehrer (1994)
Identification of a new member of the protegrin family by cDNA cloningFEBS Letters, 346
A. Tossi, M. Scocchi, M. Zanetti, P. Storici, R. Gennaro (1995)
PMAP-37, a novel antibacterial peptide from pig myeloid cells. cDNA cloning, chemical synthesis and activity.European journal of biochemistry, 228 3
G. Mignogna, M. Simmaco, GGnther KreiI, Donatella Barra (1993)
Antibacterial and haemolytic peptides containing D‐alloisoleucine from the skin of Bombina variegata.The EMBO Journal, 12
Sungtae Yang, Jaegyu Jeon, Yangmee Kim, S. Shin, K. Hahm, J. Kim (2006)
Possible role of a PXXP central hinge in the antibacterial activity and membrane interaction of PMAP-23, a member of cathelicidin family.Biochemistry, 45 6
Hongxia Zhao, P. Kinnunen (2002)
Binding of the Antimicrobial Peptide Temporin L to Liposomes Assessed by Trp Fluorescence*The Journal of Biological Chemistry, 277
N. Papo, Z. Oren, U. Pag, H. Sahl, Y. Shai (2002)
The Consequence of Sequence Alteration of an Amphipathic α-Helical Antimicrobial Peptide and Its Diastereomers*The Journal of Biological Chemistry, 277
R. Lehrer, T. Ganz (1999)
Antimicrobial peptides in mammalian and insect host defence.Current opinion in immunology, 11 1
M. Sforça, S. Oyama, F. Canduri, C. Lorenzi, T. Pertinhez, K. Konno, B. Souza, M. Palma, J. Neto, W. Azevedo, A. Spisni (2004)
How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp.Biochemistry, 43 19
Bruce Roth, M. Poot, S. Yue, P. Millard (1997)
Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stainApplied and Environmental Microbiology, 63
James Driscoll, Yi Zuo, Tao Xu, J. Choi, R. Troxler, F. Oppenheim (1995)
Functional Comparison of Native and Recombinant Human Salivary Histatin 1Journal of Dental Research, 74
D. Shalev, A. Mor, I. Kustanovich (2002)
Structural consequences of carboxyamidation of dermaseptin S3.Biochemistry, 41 23
Delphine Destoumieux, P. Bulet, D. Loew, A. Dorsselaer, Jenny Rodriguez, E. Bachère (1997)
Penaeidins, a New Family of Antimicrobial Peptides Isolated from the Shrimp Penaeus vannamei (Decapoda)*The Journal of Biological Chemistry, 272
T. Ganz, R. Lehrer (1999)
Antibiotic peptides from higher eukaryotes: biology and applications.Molecular medicine today, 5 7
M. Gough, Robert Hancock, Niamh Kelly (1996)
Antiendotoxin activity of cationic peptide antimicrobial agentsInfection and Immunity, 64
J. Mackintosh, D. Veal, A. Beattie, A. Gooley (1998)
Isolation from an Ant Myrmecia gulosa of Two Inducible O-Glycosylated Proline-rich Antibacterial Peptides*The Journal of Biological Chemistry, 273
V. Kokryakov, S. Harwig, Elena Panyutich, A. Shevchenko, G. Aleshina, O. Shamova, H. Korneva, R. Lehrer (1993)
Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesinsFEBS Letters, 327
J. Larrick, M. Hirata, R. Balint, Jaehag Lee, J. Zhong, S. Wright (1995)
Human CAP18: a novel antimicrobial lipopolysaccharide-binding proteinInfection and Immunity, 63
T. McIntosh (1980)
Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model.Biophysical journal, 29 2
Kyoung-soo Park, D. Oh, S. Shin, K. Hahm, Yangmee Kim (2002)
Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy.Biochemical and biophysical research communications, 290 1
A. Mor, Van Nguyen, A. Delfour, D. Migliore‐Samour, P. Nicolas (1991)
Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin.Biochemistry, 30 36
M. Cabrera, Sabrina Costa, B. Souza, M. Palma, J. Ruggiero, J. Neto (2008)
Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1European Biophysics Journal, 37
A. Som, G. Tew (2008)
Influence of lipid composition on membrane activity of antimicrobial phenylene ethynylene oligomers.The journal of physical chemistry. B, 112 11
Y. Goumon, J. Strub, M. Moniatte, G. Nullans, L. Poteur, P. Hubert, A. Dorsselaer, D. Aunis, M. Metz-Boutigue (1996)
The C-terminal bisphosphorylated proenkephalin-A-(209-237)-peptide from adrenal medullary chromaffin granules possesses antibacterial activity.European journal of biochemistry, 235 3
A. Giangaspero, L. Sandri, A. Tossi (2001)
Amphipathic α helical antimicrobial peptides.FEBS Journal, 268
P Storici, M Zanetti (1993)
A cDNA derived from pig bone marrow cells contains a sequence identical to the intestinal antimicrobial peptide PR-39Biochem Biophys Res Commun, 196
Yosef Rosenfeld, D. Barra, M. Simmaco, Y. Shai, M. Mangoni (2006)
A Synergism between Temporins toward Gram-negative Bacteria Overcomes Resistance Imposed by the Lipopolysaccharide Protective Layer*Journal of Biological Chemistry, 281
R. Hancock, M. Scott (2000)
The role of antimicrobial peptides in animal defenses.Proceedings of the National Academy of Sciences of the United States of America, 97 16
B Agerberth, J-Y Lee, T Bergman, M Carlquist, HG Boman, V Mutt, H Jörnvall (1991)
Amino acid sequence of PR-39Eur J Biochem, 202
Shunyi Zhu, L. Wei, K. Yamasaki, R. Gallo (2008)
Activation of cathepsin L by the cathelin-like domain of protegrin-3.Molecular immunology, 45 9
N. Borregaard, O. Sørensen, K. Theilgaard-Mönch (2007)
Neutrophil granules: a library of innate immunity proteins.Trends in immunology, 28 8
Peng Li, T. Wohland, B. Ho, J. Ding (2004)
Perturbation of Lipopolysaccharide (LPS) Micelles by Sushi 3 (S3) Antimicrobial PeptideJournal of Biological Chemistry, 279
C. Ried, C. Wahl, T. Miethke, G. Wellnhofer, C. Landgraf, J. Schneider-Mergener, A. Hoess (1996)
High Affinity Endotoxin-binding and Neutralizing Peptides Based on the Crystal Structure of Recombinant Limulus Anti-lipopolysaccharide Factor*The Journal of Biological Chemistry, 271
A. Kroon, M. Soekarjo, J. Gier, B. Kruijff (1990)
The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.Biochemistry, 29 36
Seong-Cheol Park, Mi-hyun Kim, M. Hossain, S. Shin, Yangmee Kim, L. Stella, J. Wade, Yoonkyung Park, K. Hahm (2008)
Amphipathic alpha-helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions.Biochimica et biophysica acta, 1778 1
R. Epand, M. Schmitt, S. Gellman, R. Epand (2006)
Role of membrane lipids in the mechanism of bacterial species selective toxicity by two alpha/beta-antimicrobial peptides.Biochimica et biophysica acta, 1758 9
R. Epand, S. Rotem, A. Mor, B. Berno, R. Epand (2008)
Bacterial membranes as predictors of antimicrobial potency.Journal of the American Chemical Society, 130 43
M. Ali, A. Soto, F. Knoop, J. Conlon (2001)
Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae).Biochimica et biophysica acta, 1550 1
D. Andreu, R. Merrifield, H. Steiner, H. Boman (1983)
Solid-phase synthesis of cecropin A and related peptides.Proceedings of the National Academy of Sciences of the United States of America, 80 21
R. Epand, J. Martinou, Monique Fornallaz-Mulhauser, D. Hughes, R. Epand (2002)
The Apoptotic Protein tBid Promotes Leakage by Altering Membrane Curvature*The Journal of Biological Chemistry, 277
Ju Lee, Sungtae Yang, Seung Lee, Hyun-Ho Jung, S. Shin, K. Hahm, J. Kim (2008)
Salt‐resistant homodimeric bactenecin, a cathelicidin‐derived antimicrobial peptideThe FEBS Journal, 275
Seong-Cheol Park, N. Yoo, Jin-Young Kim, H. Park, B. Chae, S. Shin, H. Cheong, Yoonkyung Park, K. Hahm (2008)
Isolation and characterization of an extracellular antimicrobial protein from Aspergillus oryzae.Journal of agricultural and food chemistry, 56 20
B. Orioni, G. Bocchinfuso, Jin Kim, A. Palleschi, Giacinto Grande, S. Bobone, Yoonkyung Park, J. Kim, K. Hahm, L. Stella (2009)
Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study.Biochimica et biophysica acta, 1788 7
H. Katayama, T. Ohira, K. Aida, H. Nagasawa (2002)
Significance of a carboxyl-terminal amide moiety in the folding and biological activity of crustacean hyperglycemic hormonePeptides, 23
A. Giacometti, O. Cirioni, R. Ghiselli, F. Mocchegiani, M. Prete, C. Viticchi, W. Kamysz, Elżbieta Łempicka, V. Saba, G. Scalise (2002)
Potential Therapeutic Role of Cationic Peptides in Three Experimental Models of Septic ShockAntimicrobial Agents and Chemotherapy, 46
N. Morikawa, K. Hagiwara, T. Nakajima (1992)
Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa.Biochemical and biophysical research communications, 189 1
G. Sal, P. Storici, C. Schneider, D. Romeo, M. Zanetti (1992)
cDNA cloning of the neutrophil bactericidal peptide indolicidin.Biochemical and biophysical research communications, 187 1
J. Ghosh, S. Peisajovich, M. Ovadia, Y. Shai (1998)
Structure-Function Study of a Heptad Repeat Positioned Near the Transmembrane Domain of Sendai Virus Fusion Protein Which Blocks Virus-Cell Fusion*The Journal of Biological Chemistry, 273
S. Cociancich, A. Dupont, G. Hegy, R. Lanot, F. Holder, C. Hétru, J. Hoffmann, P. Bulet (1994)
Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus.The Biochemical journal, 300 ( Pt 2)
K. Konno, M. Hisada, H. Naoki, Y. Itagaki, R. Fontana, M. Rangel, Joacir Oliveira, M. Cabrera, J. Neto, I. Hide, Y. Nakata, T. Yasuhara, T. Nakajima (2006)
Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatusPeptides, 27
N. Papo, Y. Shai (2005)
A Molecular Mechanism for Lipopolysaccharide Protection of Gram-negative Bacteria from Antimicrobial Peptides*Journal of Biological Chemistry, 280
Lihua Yang, V. Gordon, D. Trinkle, N. Schmidt, Matthew Davis, C. DeVries, A. Som, J. Cronan, G. Tew, G. Wong (2008)
Mechanism of a prototypical synthetic membrane-active antimicrobial: Efficient hole-punching via interaction with negative intrinsic curvature lipidsProceedings of the National Academy of Sciences, 105
A. Mor, Khaled Hani, Pierre Nicolas (1994)
The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms.The Journal of biological chemistry, 269 50
A. Sandvik, G. Dockray (1999)
Biological activity of carboxy-terminal gastrin analogs.European journal of pharmacology, 364 2-3
K. Marynka, S. Rotem, I. Portnaya, U. Cogan, A. Mor (2007)
In vitro discriminative antipseudomonal properties resulting from acyl substitution of N-terminal sequence of dermaseptin s4 derivatives.Chemistry & biology, 14 1
H. Jenssen, P. Hamill, R. Hancock (2006)
Peptide Antimicrobial AgentsClinical Microbiology Reviews, 19
M. Mangoni, A. Aumelas, P. Charnet, C. Roumestand, L. Chiche, E. Despaux, G. Grassy, B. Calas, A. Chavanieu (1996)
Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formationFEBS Letters, 383
R. Lewis, R. McElhaney (2009)
The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes.Biochimica et biophysica acta, 1788 10
Jin-Young Kim, Sun Lee, Seong-Cheol Park, S. Shin, S. Choi, Yoonkyung Park, K. Hahm (2007)
Purification and antimicrobial activity studies of the N-terminal fragment of ubiquitin from human amniotic fluid.Biochimica et biophysica acta, 1774 9
Margit Apponyi, T. Pukala, C. Brinkworth, V. Maselli, J. Bowie, M. Tyler, G. Booker, J. Wallace, J. Carver, F. Separovic, J. Doyle, L. Llewellyn (2004)
Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significancePeptides, 25
J. Wong, L. Xia, T. Ng (2007)
A review of defensins of diverse origins.Current protein & peptide science, 8 5
M. Zanetti, P. Storici, A. Tossi, M. Scocchi, R. Gennaro (1994)
Molecular cloning and chemical synthesis of a novel antibacterial peptide derived from pig myeloid cells.The Journal of biological chemistry, 269 11
E. Bolen, P. Holloway (1990)
Quenching of tryptophan fluorescence by brominated phospholipid.Biochemistry, 29 41
J. Hale, R. Hancock (2007)
Alternative mechanisms of action of cationic antimicrobial peptides on bacteriaExpert Review of Anti-infective Therapy, 5
B. Ramanathan, E. Davis, C. Ross, F. Blecha (2002)
Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity.Microbes and infection, 4 3
U. Pag, M. Oedenkoven, V. Sass, Y. Shai, O. Shamova, N. Antcheva, A. Tossi, H. Sahl (2008)
Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an alpha-helical 'sequence template'.The Journal of antimicrobial chemotherapy, 61 2
D. Andreu, L. Rivas (1998)
Animal antimicrobial peptides: an overview.Biopolymers, 47 6
JK Ghosh, SG Peisajovich, M Ovadia, Y Shai (1998)
Serum-induced leakage of liposome contentsJ Biol Chem, 273
K. Konno, M. Hisada, H. Naoki, Y. Itagaki, N. Kawai, A. Miwa, T. Yasuhara, Y. Morimoto, Y. Nakata (2000)
Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado).Toxicon : official journal of the International Society on Toxinology, 38 11
B. Agerberth, Jong-Youn Lee, T. Bergman, M. Carlquist, H. Boman, V. Mutt, H. Jörnvall (1991)
Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides.European journal of biochemistry, 202 3
T. Allen, L. Cleland (1980)
Serum-induced leakage of liposome contents.Biochimica et biophysica acta, 597 2
G. Bergsson, B. Agerberth, H. Jörnvall, G. Gudmundsson (2005)
Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua)The FEBS Journal, 272
M. Zasloff (2002)
Antimicrobial peptides of multicellular organismsNature, 415
G. Fujii, D. Eisenberg, M. Selsted (1993)
Defensins promote fusion and lysis of negatively charged membranesProtein Science, 2
Anddomenico Romeo (1989)
Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophilsInfection and Immunity, 57
P. Bulet, G. Hegy, J. Lambert, A. Dorsselaer, J. Hoffmann, C. Hétru (1995)
Insect immunity. The inducible antibacterial peptide diptericin carries two O-glycans necessary for biological activity.Biochemistry, 34 22
P. Storici, M. Zanetti (1993)
A cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptide PR-39.Biochemical and biophysical research communications, 196 3
N. Yanagida, T. Uozumi, T. Beppu (1986)
Specific excretion of Serratia marcescens protease through the outer membrane of Escherichia coliJournal of Bacteriology, 166
C. Maeng, Mee Oh, Il Park, Hyo Hong (2001)
Purification and structural analysis of the hepatitis B virus preS1 expressed from Escherichia coli.Biochemical and biophysical research communications, 282 3
Lihua Yang, V. Gordon, D. Trinkle, N. Schmidt, Matthew Davis, C. DeVries, A. Som, J. Cronan, G. Tew, G. Wong (2008)
Mechanism of A Prototypical Synthetic Membrane-Active Antimicrobial: Efficient Hole-Punching by Targeting Lipids With Negative Spontaneous Curvature Lipids
R. Epand, M. Schmitt, S. Gellman, R. Epand (2006)
Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptidesBiochimica et Biophysica Acta, 1758
A. Tossi, L. Sandri, A. Giangaspero (2000)
Amphipathic, α‐helical antimicrobial peptidesBiopolymers, 55
M. Cabrera, Manoel Arcisio-Miranda, Sabrina Costa, K. Konno, J. Ruggiero, J. Procópio, J. Neto (2008)
Study of the mechanism of action of anoplin, a helical antimicrobial decapeptide with ion channel‐like activity, and the role of the amidated C‐terminusJournal of Peptide Science, 14
PMAP-23 is a member of the cathelicidin family derived from pig myeloid cells and has potent antimicrobial activity. Amidation of the carboxyl terminus (C-terminus) of an antimicrobial peptide generally enhances its structural stability and antimicrobial activity or decreases its cytotoxicity. The aim of the present study was to investigate the effect of amidation on the mode of action in PMAP-23. Irrespective of amidation, PMAP-23 adopts a helix–hinge–helix structure in a membrane-mimetic environment. The antibacterial activities of PMAP-23C, which had a free C-terminus, and PMAP-23N, which had an amidated C-terminus, were similar against Gram-negative bacteria, reflecting a similar ability to neutralize lipopolysaccharide. However, PMAP-23N assumed a perpendicular orientation across the outer to the inner leaflet of the bacterial inner membrane, while PMAP-23C was orientated parallel to the lipid bilayer, as determined by following the blue shift in tryptophan fluorescence, as well as calcein release from liposomes and SYTOX Green uptake assays. These results suggest that N-terminal amidation of PMAP-23 provides structural stability and increases the peptide’s cationic charge, facilitating translocation into the bacterial inner membrane.
Amino Acids – Springer Journals
Published: May 30, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.