Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Kay, M. Grätzel (1996)
Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powderSolar Energy Materials and Solar Cells, 44
E. Ramasamy, Jinyoung Chun, Jinwoo Lee (2010)
Soft-Template Synthesized Ordered Mesoporous Carbon Counter Electrodes for Dye-Sensitized Solar CellsCarbon, 48
Da-Young Kang, Youngshin Lee, Changsoon Cho, J. Moon (2012)
Inverse opal carbons for counter electrode of dye-sensitized solar cells.Langmuir : the ACS journal of surfaces and colloids, 28 17
Amalie Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. Nazeeruddin, M. Grätzel (2014)
Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells.ACS nano, 8 1
Hui‐Seon Kim, I. Mora‐Seró, Victoria González‐Pedro, F. Fabregat‐Santiago, E. Juárez-Pérez, N. Park, J. Bisquert (2013)
Mechanism of carrier accumulation in perovskite thin-absorber solar cellsNature Communications, 4
Mi Xu, Guanghui Liu, Xiong Li, Heng Wang, Yaoguang Rong, Zhiliang Ku, Minglei Hu, Ying Yang, Linfeng Liu, Tongfa Liu, Jiangzhao Chen, Hongwei Han (2013)
Efficient monolithic solid-state dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrodeOrganic Electronics, 14
Zhiliang Ku, Yaoguang Rong, Mi Xu, Tongfa Liu, Hongwei Han (2013)
Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter ElectrodeScientific Reports, 3
A. Kyaw, Hosea Tantang, Tao Wu, L. Ke, Jun Wei, H. Demir, Qichun Zhang, X. Sun (2012)
Dye-sensitized solar cell with a pair of carbon-based electrodesJournal of Physics D: Applied Physics, 45
Waleed Laban, L. Etgar (2013)
Depleted hole conductor-free lead halide iodide heterojunction solar cellsEnergy and Environmental Science, 6
J. Heo, S. Im, J. Noh, T. Mandal, Choong‐Sun Lim, J. Chang, Yong Lee, Hi-jung Kim, A. Sarkar, Md. Nazeeruddin, M. Grätzel, S. Seok (2013)
Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductorsNature Photonics, 7
Kazuharu Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida (2003)
Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar CellsChemistry Letters, 32
B. Fang, Shengqiang Fan, Jung Kim, Minsok Kim, Minwoo Kim, N. Chaudhari, J. Ko, Jong‐Sung Yu (2010)
Incorporating hierarchical nanostructured carbon counter electrode into metal-free organic dye-sensitized solar cell.Langmuir : the ACS journal of surfaces and colloids, 26 13
Dongqin Bi, Lei Yang, G. Boschloo, A. Hagfeldt, E. Johansson (2013)
Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells.The journal of physical chemistry letters, 4 9
S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza, H. Snaith (2013)
Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite AbsorberScience, 342
T. Hino, Yasuo Ogawa, N. Kuramoto (2006)
Preparation of functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cellCarbon, 44
Hui‐Seon Kim, Chang-Ryul Lee, J. Im, Ki-Beom Lee, T. Moehl, Arianna Marchioro, S. Moon, R. Humphry‐Baker, Jun‐Ho Yum, J. Moser, M. Grätzel, N. Park (2012)
Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
L. Etgar, P. Gao, Z. Xue, Qin Peng, A. Chandiran, B. Liu, Md. Nazeeruddin, M. Grätzel (2012)
Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.Journal of the American Chemical Society, 134 42
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
S. Pang, Hao Hu, Jiliang Zhang, S. Lv, Yaming Yu, Feng Wei, Tian-shi Qin, Hongxia Xu, Zhihong Liu, G. Cui (2014)
NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar CellsChemistry of Materials, 26
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
T. Murakami, S. Ito, Qing Wang, Md. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry‐Baker, P. Comte, P. Péchy, M. Grätzel (2006)
Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter ElectrodesJournal of The Electrochemical Society, 153
P. Srinivasu, A. Islam, S. Singh, Liyuan Han, M. Kantam, S. Bhargava (2012)
Highly efficient nanoporous graphitic carbon with tunable textural properties for dye-sensitized solar cellsJournal of Materials Chemistry, 22
Jikun Chen, K. Li, Yanhong Luo, Xiaozhi Guo, Dongmei Li, Minghui Deng, Shuqing Huang, Q. Meng (2009)
A flexible carbon counter electrode for dye-sensitized solar cellsCarbon, 47
Tingwei Cai, Min Zhou, Dayong Ren, Guangshuai Han, S. Guan (2013)
Highly ordered mesoporous phenol–formaldehyde carbon as supercapacitor electrode materialJournal of Power Sources, 231
Y. Meng, D. Gu, Fuqiang Zhang, Yifeng Shi, Haifeng Yang, Zheng Li, Chengzhong Yu, B. Tu, Dongyuan Zhao (2005)
Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation.Angewandte Chemie, 44 43
G. Xing, N. Mathews, Shuangyong Sun, Swee Lim, Y. Lam, M. Grätzel, S. Mhaisalkar, T. Sum (2013)
Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3Science, 342
Highly ordered mesoporous carbon (OMC) with well-connected frameworks was applied in mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells as counter electrode. The OMC were synthesized by a template method and mixed with flaky graphite to prepare the carbon paste, which was used to fabricate the counter electrode by screen-printing technology. The OMC based solar cell presented a fill factor (FF) of 0.63 and a power conversion efficiency (η) of 7.02%, which was a remarkable improvement compared with the carbon black based device. The electrochemical impedance spectrum measurement demonstrated that the uniform mesopores and interconnected structures in the carbon counter electrode promoted the decrease of charge transfer resistance at the interface and thereby the higher FF and η was obtained.
Journal of Materials Chemistry A – Royal Society of Chemistry
Published: May 21, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.