Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices.

Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. Engineering a low-cost graphene-based electronic device has proven difficult to accomplish via a single-step fabrication process. Here we introduce a facile, inexpensive, solid-state method for generating, patterning, and electronic tuning of graphene-based materials. Laser scribed graphene (LSG) is shown to be successfully produced and selectively patterned from the direct laser irradiation of graphite oxide films under ambient conditions. Circuits and complex designs are directly patterned onto various flexible substrates without masks, templates, post-processing, transferring techniques, or metal catalysts. In addition, by varying the laser intensity and laser irradiation treatments, the electrical properties of LSG can be precisely tuned over 5 orders of magnitude of conductivity, a feature that has proven difficult with other methods. This inexpensive method for generating LSG on thin flexible substrates provides a mode for fabricating a low-cost graphene-based NO(2) gas sensor and enables its use as a heterogeneous scaffold for the selective growth of Pt nanoparticles. The LSG also shows exceptional electrochemical activity that surpasses other carbon-based electrodes in electron charge transfer rate as demonstrated using a ferro-/ferricyanide redox couple. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACS Nano Pubmed

Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices.

Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices.


Abstract

Engineering a low-cost graphene-based electronic device has proven difficult to accomplish via a single-step fabrication process. Here we introduce a facile, inexpensive, solid-state method for generating, patterning, and electronic tuning of graphene-based materials. Laser scribed graphene (LSG) is shown to be successfully produced and selectively patterned from the direct laser irradiation of graphite oxide films under ambient conditions. Circuits and complex designs are directly patterned onto various flexible substrates without masks, templates, post-processing, transferring techniques, or metal catalysts. In addition, by varying the laser intensity and laser irradiation treatments, the electrical properties of LSG can be precisely tuned over 5 orders of magnitude of conductivity, a feature that has proven difficult with other methods. This inexpensive method for generating LSG on thin flexible substrates provides a mode for fabricating a low-cost graphene-based NO(2) gas sensor and enables its use as a heterogeneous scaffold for the selective growth of Pt nanoparticles. The LSG also shows exceptional electrochemical activity that surpasses other carbon-based electrodes in electron charge transfer rate as demonstrated using a ferro-/ferricyanide redox couple.

Loading next page...
 
/lp/pubmed/patterning-and-electronic-tuning-of-laser-scribed-graphene-for-guVTrtIcwQ

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1936-0851
eISSN
1936-086X
DOI
10.1021/nn204200w
pmid
22242925

Abstract

Engineering a low-cost graphene-based electronic device has proven difficult to accomplish via a single-step fabrication process. Here we introduce a facile, inexpensive, solid-state method for generating, patterning, and electronic tuning of graphene-based materials. Laser scribed graphene (LSG) is shown to be successfully produced and selectively patterned from the direct laser irradiation of graphite oxide films under ambient conditions. Circuits and complex designs are directly patterned onto various flexible substrates without masks, templates, post-processing, transferring techniques, or metal catalysts. In addition, by varying the laser intensity and laser irradiation treatments, the electrical properties of LSG can be precisely tuned over 5 orders of magnitude of conductivity, a feature that has proven difficult with other methods. This inexpensive method for generating LSG on thin flexible substrates provides a mode for fabricating a low-cost graphene-based NO(2) gas sensor and enables its use as a heterogeneous scaffold for the selective growth of Pt nanoparticles. The LSG also shows exceptional electrochemical activity that surpasses other carbon-based electrodes in electron charge transfer rate as demonstrated using a ferro-/ferricyanide redox couple.

Journal

ACS NanoPubmed

Published: Jun 19, 2012

References