Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Increased susceptibility to ischemia‐induced brain damage in transgenic mice overexpressing a dominant negative form of SHP2

Increased susceptibility to ischemia‐induced brain damage in transgenic mice overexpressing a... Cell culture studies have established SH2 domain‐containing protein tyrosine phosphatase‐2 (SHP2) as an important factor in growth factor and cytokine‐activated signaling pathways. However, the significance of SHP2 in the mammalian central nervous system (CNS) is not known since early embryonic lethality occurs in shp2 null mice. To bypass this embryonic lethality, transgenic animals containing a catalytically inactive mutant of SHP2 (SHP2‐CS) under the control of a nestin intron II/thymidine kinase minimal promoter were generated. In the developing CNS of these animals, although high‐level transgene expression was detected in the neuroepithelium, there was no obvious abnormality in progenitor cell proliferation or migration. In the adult brain, high‐level transgene expression was detected in the subventricular zone, rostral migratory stream, dentate gyrus of hippocampus, and cerebellum. Because SHP2 function is likely important in cell survival pathways, we used a focal cerebral ischemia model to examined whether SHP2 is important during CNS injury. Ischemia‐induced damage and neuronal death was found to be significantly greater in nestin‐SHP2‐CS mice than in wildtype littermates. These findings indicate that SHP2 is a required factor in signaling pathway(s) important for neuronal survival.—Aoki, Y., Huang, Z., Thomas, S. S., Bhide, P. G., Huang, I., Moskowitz, M. A., Reeves, S. A. Increased susceptibility to ischemiainduced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. FASEB J. 14, 1965–1973 (2000) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The FASEB journal Wiley

Increased susceptibility to ischemia‐induced brain damage in transgenic mice overexpressing a dominant negative form of SHP2

Loading next page...
 
/lp/wiley/increased-susceptibility-to-ischemia-induced-brain-damage-in-hmJzUtYmti

References (55)

Publisher
Wiley
Copyright
© Federation of American Societies for Experimental Biology
ISSN
0892-6638
eISSN
1530-6860
DOI
10.1096/fj.00-0105com
Publisher site
See Article on Publisher Site

Abstract

Cell culture studies have established SH2 domain‐containing protein tyrosine phosphatase‐2 (SHP2) as an important factor in growth factor and cytokine‐activated signaling pathways. However, the significance of SHP2 in the mammalian central nervous system (CNS) is not known since early embryonic lethality occurs in shp2 null mice. To bypass this embryonic lethality, transgenic animals containing a catalytically inactive mutant of SHP2 (SHP2‐CS) under the control of a nestin intron II/thymidine kinase minimal promoter were generated. In the developing CNS of these animals, although high‐level transgene expression was detected in the neuroepithelium, there was no obvious abnormality in progenitor cell proliferation or migration. In the adult brain, high‐level transgene expression was detected in the subventricular zone, rostral migratory stream, dentate gyrus of hippocampus, and cerebellum. Because SHP2 function is likely important in cell survival pathways, we used a focal cerebral ischemia model to examined whether SHP2 is important during CNS injury. Ischemia‐induced damage and neuronal death was found to be significantly greater in nestin‐SHP2‐CS mice than in wildtype littermates. These findings indicate that SHP2 is a required factor in signaling pathway(s) important for neuronal survival.—Aoki, Y., Huang, Z., Thomas, S. S., Bhide, P. G., Huang, I., Moskowitz, M. A., Reeves, S. A. Increased susceptibility to ischemiainduced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. FASEB J. 14, 1965–1973 (2000)

Journal

The FASEB journalWiley

Published: Oct 1, 2000

Keywords: ; ; ;

There are no references for this article.