Access the full text.
Sign up today, get DeepDyve free for 14 days.
H. Kacser, J. Burns (1981)
The molecular basis of dominance.Genetics, 97 3-4
A. Scuteri, S. Sanna, Wei-Min Chen, M. Uda, Giuseppe Albai, J. Strait, S. Najjar, R. Nagaraja, M. Orrù, G. Usala, Mariano Dei, Sandra Lai, A. Maschio, F. Busonero, A. Mulas, G. Ehret, Ashley Fink, A. Weder, R. Cooper, P. Galan, A. Chakravarti, D. Schlessinger, A. Cao, E. Lakatta, G. Abecasis (2007)
Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related TraitsPLoS Genetics, 3
T. Dawber, G. Meadors, F. Moore (1951)
Epidemiological approaches to heart disease: the Framingham Study.American journal of public health and the nation's health, 41 3
D. Zimmerman, V. Núñez-Antón, T. Gregoire, O. Schabenberger, J. Hart, M. Kenward, G. Molenberghs, G. Verbeke, M. Pourahmadi, P. Vieu, Dela Zimmerman (2001)
Parametric modelling of growth curve data: An overviewTest, 10
M. McKay (1997)
Nonparametric variance-based methods of assessing uncertainty importanceReliability Engineering & System Safety, 57
Jianqing Fan, Tao Huang, Runze Li (2007)
Analysis of Longitudinal Data With Semiparametric Estimation of Covariance FunctionJournal of the American Statistical Association, 102
S. Pletcher, C. Geyer (1999)
The genetic analysis of age-dependent traits: modeling the character process.Genetics, 153 2
M. Ikram, S. Seshadri, J. Bis, M. Fornage, A. Destefano, Y. Aulchenko, S. Debette, T. Lumley, A. Folsom, E. Herik, M. Bos, A. Beiser, M. Cushman, L. Launer, E. Shahar, M. Struchalin, Yangchun Du, N. Glazer, W. Rosamond, F. Rivadeneira, M. Kelly‐Hayes, O. Lopez, J. Coresh, A. Hofman, C. DeCarli, S. Heckbert, S. Heckbert, P. Koudstaal, Qiong Yang, N. Smith, C. Kase, K. Rice, T. Haritunians, G. Roks, P. Kort, K. Taylor, L. Lau, B. Oostra, A. Uitterlinden, J. Rotter, E. Boerwinkle, B. Psaty, B. Psaty, T. Mosley, C. Duijn, M. Breteler, W. Longstreth, P. Wolf (2009)
Genomewide association studies of stroke.The New England journal of medicine, 360 17
S. Starr, K. Jameson, Annu Hogquist, Rev, J Roose, M. Mollenauer, V. Gupta, J. Stone, A. Weiss, L Berg, L. Finkelstein, J. Lucas, P. Schwartzberg, M Fukuda, T. Kojima, H. Kabayama, K. Mikoshiba, J. Biol, K Ching, Y. Kawakami, T. Kawakami, C. Tsoukas, A Guse, E. Greiner, F. Emmrich, K. Brand, Alberola-Ila, A. Altman, N. Gascoigne, G. Koretzky, L. Min, K. Mowen, R. Reisfeld, C. Schmedt, T. Frayling, N. Timpson, M. Weedon, E. Zeggini, R. Freathy, C. Lindgren, J. Perry, K. Elliott, H. Lango, N. Rayner, B. Shields, L. Harries, J. Barrett, S. Ebrahim, D. Lawlor, S. Ring, Y. Ben-Shlomo, L. Ferrucci, R. Loos, C. Palmer
References and Notes Supporting Online Material Materials and Methods Som Text Figs. S1 to S7 References a Common Variant in the Fto Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity
RRH Anholt, TFC Mackay (2004)
Genetic analysis of complex behaviors in DrosophilaNat Rev Genet, 5
Husˇkova´ Marie, Kumar Pranab (1985)
On sequentially adaptive asymptotically efficient rank statisticsSequential Analysis, 4
C. Bogardus (2009)
Missing Heritability and GWAS UtilityObesity, 17
C. Jaquish (2007)
The Framingham Heart Study, on its way to becoming the gold standard for Cardiovascular Genetic Epidemiology?BMC Medical Genetics, 8
R. Wu, Min Lin (2006)
Functional mapping — how to map and study the genetic architecture of dynamic complex traitsNature Reviews Genetics, 7
C. Guiot, P. Delsanto, A. Carpinteri, N. Pugno, Y. Mansury, T. Deisboeck (2005)
The dynamic evolution of the power exponent in a universal growth model of tumors.Journal of theoretical biology, 240 3
Jianqing Fan, Yichao Wu (2008)
Semiparametric Estimation of Covariance Matrixes for Longitudinal DataJournal of the American Statistical Association, 103
Wei Zhao, Ying Chen, G. Casella, J. Cheverud, R. Wu (2005)
A non-stationary model for functional mapping of complex traitsBioinformatics, 21 10
D Zimmerman, V Núñez-Antón (2001)
Parametric modelling of growth curve data: an overview (with discussions)Test, 10
J. Hirschhorn (2009)
Genomewide association studies--illuminating biologic pathways.The New England journal of medicine, 360 17
QL He, A Berg, Y Li, CE Vallejos, RL Wu (2010)
Modeling genes for plant structure, development and evolution: functional mapping meets plant ontologyTrends Genet, 26
Ning Li, T. McMurry, Arthur Berg, Zhong Wang, S. Berceli, R. Wu (2010)
Functional Clustering of Periodic Transcriptional Profiles through ARMA(p,q)PLoS ONE, 5
Mark Kirkpatrick, William Hill, Robin Thompson (1994)
Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle.Genetical research, 64 1
S. Shete, F. Hosking, Lindsay Robertson, Sara Dobbins, M. Sanson, B. Malmer, M. Simon, Y. Marie, B. Boisselier, J. Delattre, K. Hoang-Xuan, S. Hallani, A. Idbaih, D. Zélénika, U. Andersson, R. Henriksson, A. Bergenheim, M. Feychting, S. Lönn, A. Ahlbom, J. Schramm, M. Linnebank, K. Hemminki, Rajiv Kumar, S. Hepworth, A. Price, G. Armstrong, Yanhong Liu, X. Gu, Robert Yu, C. Lau, M. Schoemaker, K. Muir, A. Swerdlow, M. Lathrop, M. Bondy, R. Houlston (2009)
Genome-wide association study identifies five susceptibility loci for gliomaNature Genetics, 41
C. Guiot, P. Degiorgis, P. Delsanto, P. Gabriele, T. Deisboeck (2003)
Does tumor growth follow a "universal law"?Journal of theoretical biology, 225 2
S. Cichon, N. Craddock, M. Daly, S. Faraone, P. Gejman, J. Kelsoe, T. Lehner, D. Levinson, A. Moran, P. Sklar, P. Sullivan (2009)
Genomewide association studies: history, rationale, and prospects for psychiatric disorders.The American journal of psychiatry, 166 5
F. Richards (1959)
A Flexible Growth Function for Empirical UseJournal of Experimental Botany, 10
W. Atchley, Jun Zhu (1997)
Developmental quantitative genetics, conditional epigenetic variability and growth in mice.Genetics, 147 2
U. Styrkársdóttir, Bjarni Halldórsson, Bjarni Halldórsson, S. Gretarsdottir, D. Gudbjartsson, G. Walters, T. Ingvarsson, T. Jonsdottir, Jona Saemundsdottir, S. Snorradóttir, Tuan Nguyen, Tuan Nguyen, P. Alexandersen, J. Gulcher, J. Eisman, J. Eisman, C. Christiansen, G. Sigurdsson, A. Kong, U. Thorsteinsdóttir, K. Stefánsson (2009)
New sequence variants associated with bone mineral densityNature Genetics, 41
C. Turnbull, Shahana Ahmed, J. Morrison, D. Pernet, A. Renwick, M. Maranian, S. Seal, M. Ghoussaini, Sarah Hines, C. Healey, D. Hughes, M. Warren-Perry, W. Tapper, D. Eccles, D. Evans, M. Hooning, M. Schutte, A. Ouweland, R. Houlston, G. Ross, C. Langford, P. Pharoah, Michael Stratton, Michael Stratton, A. Dunning, N. Rahman, D. Easton (2010)
Genome-wide association study identifies five new breast cancer susceptibility lociNature Genetics, 42
Chang-Xing Ma, G. Casella, R. Wu (2002)
Functional mapping of quantitative trait loci underlying the character process: a theoretical framework.Genetics, 161 4
D. Altshuler, M. Daly, E. Lander (2008)
Genetic Mapping in Human DiseaseScience, 322
Min Lin, R. Wu (2006)
A joint model for nonparametric functional mapping of longitudinal trajectory and time-to-eventBMC Bioinformatics, 7
T. Manolio, F. Collins, N. Cox, D. Goldstein, L. Hindorff, D. Hunter, M. McCarthy, E. Ramos, L. Cardon, A. Chakravarti, Judy Cho, A. Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C. Rotimi, M. Slatkin, David Valle, A. Whittemore, M. Boehnke, A. Clark, E. Eichler, G. Gibson, J. Haines, T. Mackay, S. Mccarroll, P. Visscher (2009)
Finding the missing heritability of complex diseasesNature, 461
TM Frayling, NJ Timpson, MN Weedon, E Zeggini, RM Freathy (2007)
A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesityScience, 316
R. Loos, C. Lindgren, Shengxu Li, E. Wheeler, J. Zhao, I. Prokopenko, M. Inouye, R. Freathy, A. Attwood, J. Beckmann, S. Berndt, S. Bergmann, A. Bennett, S. Bingham, M. Bochud, Morris Brown, S. Cauchi, J. Connell, C. Cooper, G. Smith, I. Day, C. Dina, S. De, E. Dermitzakis, A. Doney, K. Elliott, P. Elliott, David Evans, I. Farooqi, P. Froguel, J. Ghori, C. Groves, R. Gwilliam, D. Hadley, A. Hall, A. Hattersley, J. Hebebrand, I. Heid, B. Herrera, A. Hinney, S. Hunt, M. Jarvelin, T. Johnson, J. Jolley, F. Karpe, Andrew Keniry, K. Khaw, R. Luben, M. Mangino, J. Marchini, W. McArdle, R. McGinnis, D. Meyre, P. Munroe, A. Morris, A. Ness, M. Neville, Alexandra Nica, K. Ong, S. O’Rahilly, K. Owen, C. Palmer, Konstantinos Papadakis, Simon Potter, A. Pouta, L. Qi, J. Randall, N. Rayner, S. Ring, M. Sandhu, A. Scherag, M. Sims, Kijoung Song, N. Soranzo, Elizabeth Speliotes, H. Syddall, S. Teichmann, N. Timpson, J. Tobias, M. Uda, C. Vogel, C. Wallace, D. Waterworth, M. Weedon, C. Willer, Vicki Wraight, Xin Yuan, E. Zeggini, J. Hirschhorn, D. Strachan, W. Ouwehand, M. Caulfield, N. Samani, T. Frayling, P. Vollenweider, G. Waeber, V. Mooser, P. Deloukas, M. McCarthy, N. Wareham, I. Barroso (2008)
Common variants near MC4R are associated with fat mass, weight and risk of obesityNature Genetics, 40
R. Anholt, T. Mackay (2004)
Quantitative genetic analyses of complex behaviours in DrosophilaNature Reviews Genetics, 5
Caroline Fox, N. Heard-Costa, L. Cupples, J. Dupuis, Ramachandran Vasan, Larry Atwood, Nancy Heard, L. Adrienne, Josée, Ramachandran, Larry, D. Atwood
Bmc Medical Genetics Genome-wide Association to Body Mass Index and Waist Circumference: the Framingham Heart Study 100k Project
Q. He, Arthur Berg, Yao Li, C. Vallejos, R. Wu (2010)
Mapping genes for plant structure, development and evolution: functional mapping meets ontology.Trends in genetics : TIG, 26 1
K. Mohlke, M. Boehnke, G. Abecasis (2008)
Metabolic and cardiovascular traits: an abundance of recently identified common genetic variants.Human molecular genetics, 17 R2
Jie Yang, R. Wu, G. Casella (2009)
Nonparametric Functional Mapping of Quantitative Trait LociBiometrics, 65
T. Frayling (2007)
Genome–wide association studies provide new insights into type 2 diabetes aetiologyNature Reviews Genetics, 8
Yuehua Cui, Jun Zhu, R. Wu (2006)
Functional mapping for genetic control of programmed cell death.Physiological genomics, 25 3
Philippe Luedi, A. Hartemink, R. Jirtle (2005)
Genome-wide prediction of imprinted murine genes.Genome research, 15 6
K. Meyer (2000)
Random regressions to model phenotypic variation in monthly weights of Australian beef cowsLivestock Production Science, 65
S. Mccarroll, F. Kuruvilla, Joshua Korn, S. Cawley, J. Nemesh, Alec Wysoker, M. Shapero, P. Bakker, J. Maller, Andrew Kirby, A. Elliott, Melissa Parkin, E. Hubbell, Teresa Webster, R. Mei, Jim Veitch, P. Collins, R. Handsaker, S. Lincoln, Marcia Nizzari, J. Blume, K. Jones, R. Rava, M. Daly, S. Gabriel, D. Altshuler (2008)
Integrated detection and population-genetic analysis of SNPs and copy number variationNature Genetics, 40
P. Keightley, H. Kacser (1987)
Dominance, pleiotropy and metabolic structure.Genetics, 117 2
G. West, James Brown, B. Enquist (2001)
A general model for ontogenetic growthNature, 413
J. Hirschhorn, G. Lettre (2009)
Progress in Genome-Wide Association Studies of Human HeightHormone Research in Paediatrics, 71
P Thompson, PJL Thompson (2009)
Introduction to coaching theory
M. Kirkpatrick, David Lofsvold, M. Bulmer (1990)
Analysis of the inheritance, selection and evolution of growth trajectories.Genetics, 124 4
CS Fox, N Heard-Costa, LA Cupples, J Dupuis, RS Vasan (2007)
Genome-wide association to body mass index and waist circumference: the Framingham Heart Study 100K projectBMC Med Genet, 8
G. Lettre, J. Rioux (2008)
Autoimmune diseases: insights from genome-wide association studies.Human molecular genetics, 17 R2
L. Bertalanffy (1957)
Quantitative Laws in Metabolism and GrowthThe Quarterly Review of Biology, 32
Although genome-wide association studies (GWAS) are widely used to identify the genetic and environmental etiology of a trait, several key issues related to their statistical power and biological relevance have remained unexplored. Here, we describe a novel statistical approach, called functional GWAS or f GWAS, to analyze the genetic control of traits by integrating biological principles of trait formation into the GWAS framework through mathematical and statistical bridges. f GWAS can address many fundamental questions, such as the patterns of genetic control over development, the duration of genetic effects, as well as what causes developmental trajectories to change or stop changing. In statistics, f GWAS displays increased power for gene detection by capitalizing on cumulative phenotypic variation in a longitudinal trait over time and increased robustness for manipulating sparse longitudinal data.
Human Genetics – Springer Journals
Published: Jun 1, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.