-
L.
Demarchi,
A.
Kania,
W.
Ciężkowski,
H.
Piórkowski,
Z.
Oswiecimska-Piasko,
J.
Chormański
(2020)
Recursive Feature Elimination and Random Forest Classification of Natura 2000 Grasslands in Lowland River Valleys of Poland Based on Airborne Hyperspectral and LiDAR Data Fusion
Remote. Sens., 12
-
B.
Guo,
R.
Damper,
S.
Gunn,
J.
Nelson
(2008)
A fast separability-based feature-selection method for high-dimensional remotely sensed image classification
Pattern Recognit., 41
-
J.
Gray,
C.
Song
(2013)
Consistent classification of image time series with automatic adaptive signature generalization
Remote Sensing of Environment, 134
-
J.
Cihlar,
L.
Jansen
(2001)
From Land Cover to Land Use: A Methodology for Efficient Land Use Mapping over Large Areas
The Professional Geographer, 53
-
M.
Vieira,
A.
Formaggio,
C.
Rennó,
C.
Atzberger,
D.
Aguiar,
M.
Mello
(2012)
Object Based Image Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas
Remote Sensing of Environment, 123
-
M.
Ridd
(1995)
Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities
International Journal of Remote Sensing, 16
-
(2003)
high-dimensional remotely sensed image classification. Pattern Recognit
-
Fernando
Chapa,
S.
Hariharan,
J.
Hack
(2019)
A New Approach to High-Resolution Urban Land Use Classification Using Open Access Software and True Color Satellite Images
Sustainability
-
L.
Nguyen,
D.
Joshi,
D.
Clay,
G.
Henebry
(2020)
Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier
Remote Sensing of Environment, 238
-
E.
Lambin,
B.
Turner,
H.
Geist,
S.
Agbola,
A.
Angelsen,
J.
Bruce,
O.
Coomes,
R.
Dirzo,
G.
Fischer,
C.
Folke,
P.
George,
K.
Homewood,
J.
Imbernon,
R.
Leemans,
Xiubing
Li,
E.
Moran,
M.
Mortimore,
P.
Ramakrishnan,
J.
Richards,
H.
Skånes,
W.
Steffen,
G.
Stone,
U.
Svedin,
T.
Veldkamp,
C.
Vogel,
Jian-chu
Xu
(2001)
The causes of land-use and land-cover change: moving beyond the myths
Global Environmental Change-human and Policy Dimensions, 11
-
C.
Song,
C.
Woodcock,
K.
Seto,
M.
Lenney,
S.
Macomber
(2001)
Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?
Remote Sensing of Environment, 75
-
Dennis
Duro,
S.
Franklin,
M.
Dubé
(2012)
A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
Remote Sensing of Environment, 118
-
A.
Abdi
(2019)
Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data
GIScience & Remote Sensing, 57
-
R.
Congalton,
K.
Green
(2019)
Assessing the Accuracy of Remotely Sensed Data
-
A.
Okujeni,
S.
Linden,
P.
Hostert
(2015)
Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning
Remote Sensing of Environment, 158
-
Changshan
Wu
(2004)
Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery
Remote Sensing of Environment, 93
-
Justin
Stoler,
D.
Daniels,
J.
Weeks,
D.
Stow,
L.
Coulter,
B.
Finch
(2012)
Assessing the Utility of Satellite Imagery with Differing Spatial Resolutions for Deriving Proxy Measures of Slum Presence in Accra, Ghana
GIScience & Remote Sensing, 49
-
B.
Bhatta
(2010)
Analysis of Urban Growth and Sprawl from Remote Sensing Data
-
Yanan
Liu,
Weishu
Gong,
Xiangyun
Hu,
J.
Gong
(2018)
Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data
Remote. Sens., 10
-
E.
Vermote,
C.
Justice,
M.
Claverie,
B.
Franch
(2016)
Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product.
Remote sensing of environment, Volume 185 Iss 2
-
J.
Masek,
E.
Vermote,
N.
Saleous,
R.
Wolfe,
F.
Hall,
K.
Huemmrich,
F.
Gao,
J.
Kutler,
T.
Lim
(2006)
A Landsat surface reflectance dataset for North America, 1990-2000
IEEE Geoscience and Remote Sensing Letters, 3
-
R.
Powell,
D.
Roberts,
P.
Dennison,
L.
Hess
(2007)
Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil
Remote Sensing of Environment, 106
-
R.
Congalton,
K.
Green
(1998)
Assessing the accuracy of remotely sensed data : principles and practices
-
B.
Dixon,
N.
Candade
(2008)
Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?
International Journal of Remote Sensing, 29
-
L.
Coulter,
D.
Stow,
Y.
Tsai,
N.
Ibáñez,
Hsiao-chien
Shih,
Andrew
Kerr,
Magdalena
Benza,
J.
Weeks,
F.
Mensah
(2016)
Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery
Remote Sensing of Environment, 184
-
Hsiao-chien
Shih,
D.
Stow,
Yung-ming
Tsai,
D.
Roberts
(2020)
Estimating the starting time and identifying the type of urbanization based on dense time series of landsat-derived Vegetation-Impervious-Soil (V-I-S) maps - A case study of North Taiwan from 1990 to 2015
Int. J. Appl. Earth Obs. Geoinformation, 85
-
J.
Jensen
(2000)
Remote Sensing of the Environment: An Earth Resource Perspective
-
T.
Rashed,
J.
Weeks,
Saad
Gadalla,
A.
Hill
(2001)
Revealing the Anatomy of Cities through Spectral Mixture Analysis of Multispectral Satellite Imagery: A Case Study of the Greater Cairo Region, Egypt.
Geocarto International, 16
-
L.
Breiman
(2001)
Random Forests
Machine Learning, 45
-
R.
Genuer,
Jean-Michel
Poggi,
Christine
Tuleau-Malot
(2015)
VSURF: An R Package for Variable Selection Using Random Forests
R J., 7
-
D.
Stow,
J.
Weeks,
Sory
Toure,
L.
Coulter,
C.
Lippitt,
E.
Ashcroft
(2013)
Urban Vegetation Cover and Vegetation Change in Accra, Ghana: Connection to Housing Quality
The Professional Geographer, 65
-
(2001)
using open access software and true color satellite images. Sustainability
-
Zhe
Zhu,
C.
Woodcock,
J.
Rogan,
J.
Kellndorfer
(2012)
Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data
Remote Sensing of Environment, 117
-
M.
Herold,
Xiaohang
Liu,
K.
Clarke
(2003)
Spatial Metrics and Image Texture for Mapping Urban Land Use
Photogrammetric Engineering and Remote Sensing, 69
-
J.
Jensen,
Fang
Qiu,
K.
Patterson
(2001)
A Neural Network Image Interpretation System to Extract Rural and Urban Land Use and Land Cover Information from Remote Sensor Data
Geocarto International, 16
-
A.
Schneider
(2012)
Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach
Remote Sensing of Environment, 124
-
Hsiao-chien
Shih,
D.
Stow,
Y.
Tsai
(2018)
Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping
International Journal of Remote Sensing, 40
-
M.
Pal,
P.
Mather
(2005)
Support vector machines for classification in remote sensing
International Journal of Remote Sensing, 26