Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Sarikaya, C. Tamerler, A. Jen, K. Schulten, F. Baneyx (2003)
Molecular biomimetics: nanotechnology through biologyNature Materials, 2
Yu Huang, X. Duan, Qingqiao Wei, Charles Lieber (2001)
Directed assembly of one-dimensional nanostructures into functional networks.Science, 291 5504
Miri Yemini, M. Reches, J. Rishpon, E. Gazit (2005)
Novel electrochemical biosensing platform using self-assembled peptide nanotubes.Nano letters, 5 1
Xiaojun Zhao, Shuguang Zhang (2004)
Fabrication of molecular materials using peptide construction motifs.Trends in biotechnology, 22 9
Chuanbin Mao, C. Flynn, A. Hayhurst, R. Sweeney, J. Qi, G. Georgiou, B. Iverson, A. Belcher (2003)
Viral assembly of oriented quantum dot nanowiresProceedings of the National Academy of Sciences of the United States of America, 100
S. Vauthey, S. Santoso, H. Gong, N. Watson, Shuguang Zhang (2002)
Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesiclesProceedings of the National Academy of Sciences of the United States of America, 99
N. Asherie (2004)
Protein crystallization and phase diagrams.Methods, 34 3
C. Görbitz (2006)
The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide.Chemical communications, 22
Ipsita Banerjee, Lingtao Yu, M. Shima, T. Yoshino, H. Takeyama, T. Matsunaga, H. Matsui (2005)
Magnetic Nanotube Fabrication by Using Bacterial Magnetic NanocrystalsAdvanced Materials, 17
M. Reches, E. Gazit (2003)
Casting Metal Nanowires Within Discrete Self-Assembled Peptide NanotubesScience, 300
C. Görbitz (2001)
Nanotube formation by hydrophobic dipeptides.Chemistry, 7 23
Lihi Adler‐Abramovich, M. Reches, Victoria Sedman, S. Allen, S. Tendler, E. Gazit (2006)
Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications.Langmuir : the ACS journal of surfaces and colloids, 22 3
Z. Ren, Z. Huang, J. Xu, Jin Wang, P. Bush, M. Siegal, P. Provencio (1998)
Synthesis of large arrays of well-aligned carbon nanotubes on glassScience, 282 5391
Zhong Wang, Jinhui Song (2006)
Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire ArraysScience, 312
M. Ghadiri, J. Granja, R. Milligan, D. McRee, N. Khazanovich (1993)
Self-assembling organic nanotubes based on a cyclic peptide architectureNature, 366
A. Aggeli, M. Bell, N. Boden, J. Keen, P. Knowles, T. McLeish, M. Pitkeathly, S. Radford (1997)
Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapesNature, 386
M. Terrones, N. Grobert, J. Olivares, J. Zhang, H. Terrones, K. Kordatos, W. Hsu, J. Hare, P. Townsend, K. Prassides, A. Cheetham, H. Kroto, D. Walton (1997)
Controlled production of aligned-nanotube bundlesNature, 388
Chuanbin Mao, D. Solis, B. Reiss, S. Kottmann, R. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson, A. Belcher (2004)
Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting NanowiresScience, 303
Wen-zhi Li, S. Xie, Luxi Qian, B. Chang, B. Zou, Weiya Zhou, Ri-an Zhao, Guo-Liang Wang (1996)
Large-Scale Synthesis of Aligned Carbon NanotubesScience, 274
A. Modi, N. Koratkar, E. Lass, B. Wei, P. Ajayan (2003)
Miniaturized gas ionization sensors using carbon nanotubesNature, 424
D. Hamada, I. Yanagihara, K. Tsumoto (2004)
Engineering amyloidogenicity towards the development of nanofibrillar materials.Trends in biotechnology, 22 2
Yujiang Song, Sivakumar Challa, C. Medforth, Y. Qiu, R. Watt, D. Pena, James Miller, F. Swol, J. Shelnutt (2004)
Synthesis of peptide-nanotube platinum-nanoparticle composites.Chemical communications, 9
I. Banerjee, Lingtao Yu, H. Matsui (2003)
Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformationProceedings of the National Academy of Sciences of the United States of America, 100
M. Reches, E. Gazit (2005)
Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analoguesIsrael Journal of Chemistry, 45
G. Whitesides, J. Mathias, C. Seto (1991)
Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures.Science, 254 5036
JD Hartgerink, E Beniash, SI Stupp (2001)
Self-assembly and mineralization of peptide-amphiphile nanofibersScience, 294
F. Patolsky, Gengfeng Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, Charles Lieber (2004)
Electrical detection of single viruses.Proceedings of the National Academy of Sciences of the United States of America, 101 39
N. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, Pierre Petroff, J. Heath (2003)
Ultrahigh-Density Nanowire Lattices and CircuitsScience, 300
N. Kol, Lihi Adler‐Abramovich, D. Barlam, R. Shneck, E. Gazit, I. Rousso (2005)
Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures.Nano letters, 5 7
T. Thurn‐Albrecht, J. Schotter, G. Kästle, N. Emley, T. Shibauchi, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. Black, M. Tuominen, T. Russell (2000)
Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.Science, 290 5499
Z. Zhong, Deli Wang, Yi Cui, Marc Bockrath, Charles Lieber (2003)
Nanowire Crossbar Arrays as Address Decoders for Integrated NanosystemsScience, 302
Controlling the spatial organization of objects at the nanoscale is a key challenge in enabling their technological application 1,2,3 . Biomolecular assemblies are attractive nanostructures owing to their biocompatibility, straightforward chemical modifiability, inherent molecular recognition properties and their availability for bottom-up fabrication 4,5,6,7,8,9,10,11,12,13,14,15,16 . Aromatic peptide nanotubes are self-assembled nanostructures with unique physical and chemical stability and remarkable mechanical rigidity 14,15,16 . Their application in the fabrication of metallic nanowires and in the improvement of the sensitivity of electrochemical biosensors have already been demonstrated 14,15,16,17 . Here we show the formation of a vertically aligned nanoforest by axial unidirectional growth of a dense array of these peptide tubes. We also achieved horizontal alignment of the tubes through noncovalent coating of the tubes with a ferrofluid and the application of an external magnetic field. Taken together, our results demonstrate the ability to form a two-dimensional dense array of nanotube assemblies with either vertical or horizontal patterns.
Nature Nanotechnology – Springer Journals
Published: Dec 5, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.