Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Elam, Z. Sechrist, S. George (2002)
ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: growth and surface roughness measurementsThin Solid Films, 414
Zikang Tang, G. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa (1998)
Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin filmsApplied Physics Letters, 72
X. Wu, A. Yamilov, X. Liu, S. Li, V. Dravid, R. Chang, H. Cao (2004)
Ultraviolet photonic crystal laserApplied Physics Letters, 85
Michael Huang, S. Mao, H. Feick, Haoquan Yan, Yiying Wu, H. Kind, E. Weber, R. Russo, P. Yang (2001)
Room-Temperature Ultraviolet Nanowire NanolasersScience, 292
Data are an estimate obtained by applying the Scherrer formula
H. Yoshikawa, S. Adachi (1997)
Optical constants of ZnOJapanese Journal of Applied Physics, 36
M. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, M. Scalora (2003)
Accessing the optical limiting properties of metallo-dielectric photonic band gap structuresJournal of Applied Physics, 93
M. Scharrer, Xiaohua Wu, A. Yamilov, H. Cao, R. Chang (2005)
Fabrication of inverted opal ZnO photonic crystals by atomic layer depositionApplied Physics Letters, 86
C. López (2003)
Materials Aspects of Photonic CrystalsAdvanced Materials, 15
E. Seelig, B. Tang, A. Yamilov, H. Cao, R. Chang (2003)
Self-assembled 3D photonic crystals from ZnO colloidal spheresMaterials Chemistry and Physics, 80
Hongwei Yan, C. Blanford, B. Holland, W. Smyrl, A. Stein (2000)
General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversionChemistry of Materials, 12
P. Jiang, J. Bertone, K. Hwang, V. Colvin (1999)
Single-Crystal Colloidal Multilayers of Controlled ThicknessChemistry of Materials, 11
V. Ursaki, I. Tiginyanu, V. Zalamai, V. Masalov, É. Samarov, G. Emelchenko, F. Briones (2004)
Photoluminescence and resonant Raman scattering from ZnO-opal structuresJournal of Applied Physics, 96
T. Suntola (1985)
Atomic Layer Epitaxy
S. Lew, A. Sarofim, M. Flytzani-Stephanopoulos (1992)
Sulfidation of zinc titanate and zinc oxide solidsIndustrial & Engineering Chemistry Research, 31
This work was supported by the David and Lucile Packard Foundation (grant number 2001-17715) and the DARPA Biomagnetics Program (DARPA/AFOSR grant number
(1947)
Science 2001
P. Gao, Zhong Wang (2002)
Self-Assembled Nanowire−Nanoribbon Junction Arrays of ZnOJournal of Physical Chemistry B, 106
Z. Pan, Z. Dai, Zhong Wang (2001)
Nanobelts of Semiconducting OxidesScience, 291
M. Ritala, M. Leskelä, J. Dekker, C. Mutsaers, P. Soininen, J. Skarp (1999)
Perfectly Conformal TiN and Al2O3 Films Deposited by Atomic Layer DepositionChemical Vapor Deposition, 5
L. Dloczik, R. Engelhardt, K. Ernst, S. Fiechter, I. Sieber, R. Könenkamp (2001)
Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columnsApplied Physics Letters, 78
S. George, A. Ott, J. Klaus (1996)
Surface Chemistry for Atomic Layer GrowthThe Journal of Physical Chemistry, 100
Takayuki Sumida, Y. Wada, T. Kitamura, S. Yanagida (2001)
Macroporous ZnO Films Electrochemically Prepared by Templating of Opal FilmsChemistry Letters, 2001
S. Abrarov, S. Yuldashev, Sergey Lee, T. Kang (2004)
Suppression of the green photoluminescence band in ZnO embedded into porous opal by spray pyrolysisJournal of Luminescence, 109
D. Look (2001)
Recent Advances in ZnO Materials and DevicesMaterials Science and Engineering B-advanced Functional Solid-state Materials, 80
Steven Johnson, J. Joannopoulos (2001)
Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis.Optics express, 8 3
Yang-fang Li, G. Meng, Lide Zhang, F. Phillipp (2000)
Ordered semiconductor ZnO nanowire arrays and their photoluminescence propertiesApplied Physics Letters, 76
B. Sang, M. Konagai (1996)
Growth of Transparent Conductive Oxide ZnO Films by Atomic Layer DepositionJapanese Journal of Applied Physics, 35
B. Yao, Y. Chan, Ning Wang (2002)
FORMATION OF ZNO NANOSTRUCTURES BY A SIMPLE WAY OF THERMAL EVAPORATIONApplied Physics Letters, 81
Inverted opals are of great interest as photonic materials. Here, an inexpensive chemical vapor deposition method of synthesis of ZnO and ZnS inverse opals (see Figure) is described, based on infiltration and calcination of ZnO in synthetic polystyrene opals. Excellent control of the degree of infiltration, i.e., the layer thickness of ZnO, and thus the properties of the material, is reported.
Advanced Materials – Wiley
Published: Jan 18, 2005
Keywords: ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.