Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Boxerman, C. Quarles, Leland Hu, B. Erickson, E. Gerstner, M. Smits, T. Kaufmann, D. Barboriak, Raymond Huang, W. Wick, M. Weller, E. Galanis, Jayashree Kalpathy-Cramer, L. Shankar, P. Jacobs, C. Chung, M. Bent, Susan Chang, W. Yung, T. Cloughesy, P. Wen, M. Gilbert, B. Rosen, B. Ellingson, K. Schmainda, David Arons, A. Kingston, David Sandak, Max Wallace, A. Musella, C. Haynes (2020)
Consensus Recommendations for a Dynamic Susceptibility Contrast MRI Protocol for Use in High-Grade Gliomas.Neuro-oncology
S. Yang, B. Zhao, G. Wang, J. Xiang, S. Xu, Y. Liu, P. Zhao, Josef Pfeuffer, T. Qian (2016)
Improving the Grading Accuracy of Astrocytic Neoplasms Noninvasively by Combining Timing Information with Cerebral Blood Flow: A Multi-TI Arterial Spin-Labeling MR Imaging StudyAmerican Journal of Neuroradiology, 37
Yi-bin Xi, Xiao-wei Kang, Ning Wang, Ting-ting Liu, Yuan-Qiang Zhu, Guang Cheng, Kai Wang, Chen Li, Fan Guo, H. Yin (2019)
Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastasis using arterial spin labeling and dynamic contrast-enhanced magnetic resonance imaging.European journal of radiology, 112
C. Santarosa, A. Castellano, G. Conte, M. Cadioli, A. Iadanza, M. Terreni, A. Franzin, L. Bello, M. Caulo, A. Falini, N. Anzalone (2016)
Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis.European journal of radiology, 85 6
S. Kety, C. Schmidt (1948)
THE NITROUS OXIDE METHOD FOR THE QUANTITATIVE DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN: THEORY, PROCEDURE AND NORMAL VALUES.The Journal of clinical investigation, 27 4
E. Hong, S. Choi, Dong Shin, S. Jo, R. Yoo, Koung Kang, T. Yun, J. Kim, C. Sohn, Sung Park, J. Won, T. Kim, Chul-Kee Park, I. Kim, Soon-Tae Lee (2020)
Comparison of Genetic Profiles and Prognosis of High-Grade Gliomas Using Quantitative and Qualitative MRI Features: A Focus on G3 GliomasKorean Journal of Radiology, 22
N. Parks, V. Bhan, J. Shankar (2015)
Perfusion Imaging of Tumefactive Demyelinating Lesions Compared to High Grade GliomasCanadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, 43
Meng Law, Robert Young, James Babb, Erica Pollack, Glyn Johnson (2007)
Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas.AJNR. American journal of neuroradiology, 28 4
F. Aksoy, M. Lev (2000)
Dynamic contrast-enhanced brain perfusion imaging: technique and clinical applications.Seminars in ultrasound, CT, and MR, 21 6
Xiaoguang Li, Yong-shan Zhu, Houyi Kang, Yulong Zhang, Huaping Liang, Sumei Wang, Weiguo Zhang (2015)
Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imagingCancer Imaging, 15
Nanxi Shen, Lingyun Zhao, Jing-jing Jiang, R. Jiang, C. Su, Shun Zhang, Xiangyu Tang, Wenzhen Zhu (2016)
Intravoxel incoherent motion diffusion‐weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusionJournal of Magnetic Resonance Imaging, 44
O. Chawalparit, Chenchira Artkaew, T. Anekthananon, N. Tisavipat, P. Charnchaowanish, T. Sangruchi (2009)
Diagnostic accuracy of perfusion CT in differentiating brain abscess from necrotic tumor.Journal of the Medical Association of Thailand = Chotmaihet thangphaet, 92 4
L. Østergaard (2005)
Principles of cerebral perfusion imaging by bolus trackingJournal of Magnetic Resonance Imaging, 22
(2019)
A Biomechanical Model of Tumor-Induced Intracranial Pressure and Edema in Brain TissueBiophys. J., 116
Nosheen Ahmad, Asim Shaukat, Amna Rehan, Shamoona Rashid (2016)
Diagnostic Accuracy of Perfusion Computed Tomography in Cerebral Glioma Grading.Journal of the College of Physicians and Surgeons--Pakistan : JCPSP, 26 7
M. Artzi, F. Bokstein, D. Blumenthal, O. Aizenstein, G. Liberman, B. Corn, D. Bashat (2014)
Differentiation between vasogenic-edema versus tumor-infiltrative area in patients with glioblastoma during bevacizumab therapy: a longitudinal MRI study.European journal of radiology, 83 7
A. Jackson, J. O’Connor, G. Thompson, S. Mills (2008)
Magnetic resonance perfusion imaging in neuro-oncologyCancer Imaging, 8
Jixin Luan, Mingzhen Wu, Xiaohui Wang, Lishan Qiao, Guifang Guo, Chuanchen Zhang (2020)
The diagnostic value of quantitative analysis of ASL, DSC-MRI and DKI in the grading of cerebral gliomas: a meta-analysisRadiation Oncology (London, England), 15
Chaofeng Fan, Jing Zhang, Zhiyong Liu, M. He, Tianyi Kang, Ting Du, Yanlin Song, Yimeng Fan, Jianguo Xu (2019)
Prognostic role of microvessel density in patients with gliomaMedicine, 98
Rajan Jain, Brent Griffith, F. Alotaibi, D. Zagzag, Howard Fine, J. Golfinos, L. Schultz (2015)
Glioma Angiogenesis and Perfusion Imaging: Understanding the Relationship between Tumor Blood Volume and Leakiness with Increasing Glioma GradeAmerican Journal of Neuroradiology, 36
Weilin Xu, Qun Wang, Anwen Shao, Bainan Xu, Jianmin Zhang (2017)
The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: A systematic review and meta-analysisPLoS ONE, 12
C. Toh, K. Wei, Chien-Hung Chang, S. Ng, H. Wong (2013)
Differentiation of Primary Central Nervous System Lymphomas and Glioblastomas: Comparisons of Diagnostic Performance of Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging without and with Contrast-Leakage CorrectionAmerican Journal of Neuroradiology, 34
L. Kong, H. Chen, Yi-Hsin Yang, L. Chen (2017)
A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade.Clinical radiology, 72 3
P. Kickingereder, B. Wiestler, F. Sahm, S. Heiland, Matthias Roethke, H. Schlemmer, W. Wick, M. Bendszus, A. Radbruch (2014)
Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging.Radiology, 272 3
L. Brandão, M. Shiroishi, M. Law (2013)
Brain tumors: a multimodality approach with diffusion-weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy, dynamic susceptibility contrast and dynamic contrast-enhanced magnetic resonance imaging.Magnetic resonance imaging clinics of North America, 21 2
M. Haris, Rakesh Gupta, Anup Singh, N. Husain, M. Husain, C. Pandey, C. Srivastava, S. Behari, R. Rathore (2008)
Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRINeuroradiology, 50
E. Fainardi, Francesco Biase, M. Borrelli, A. Saletti, M. Cavallo, S. Sarubbo, S. Ceruti, R. Tamarozzi, A. Chieregato (2010)
Potential role of CT perfusion parameters in the identification of solitary intra-axial brain tumor grading.Acta neurochirurgica. Supplement, 106
O. Sobczyk, J. Fierstra, L. Venkatraghavan, J. Poublanc, J. Duffin, J. Fisher, D. Mikulis (2021)
Measuring Cerebrovascular Reactivity: Sixteen Avoidable PitfallsFrontiers in Physiology, 12
Dinil S, A. Ramaniharan, Rupsa Bhattacharjee, Rakesh Gupta, I. Saha, M. Cauteren, Tejas Shah, Karthik Gopalakrishnan, Abhinav Gupta, Anup Singh (2020)
Evaluating feasibility of high resolution T1-perfusion MRI with whole brain coverage using compressed SENSE: Application to glioma grading.European journal of radiology, 129
T. Holmes, J. Petrella, J. Provenzale (2004)
Distinction between cerebral abscesses and high-grade neoplasms by dynamic susceptibility contrast perfusion MRI.AJR. American journal of roentgenology, 183 5
M. Grade, J. Tamames, F. Pizzini, E. Achten, X. Golay, M. Smits (2015)
A neuroradiologist’s guide to arterial spin labeling MRI in clinical practiceNeuroradiology, 57
L. Gately, S. McLachlan, A. Dowling, J. Philip (2017)
Life beyond a diagnosis of glioblastoma: a systematic review of the literatureJournal of Cancer Survivorship, 11
M. Law, Stanley Yang, Hao Wang, J. Babb, G. Johnson, S. Cha, E. Knopp, D. Zagzag (2003)
Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging.AJNR. American journal of neuroradiology, 24 10
M. Assimakopoulou, G. Sotiropoulou-Bonikou, T. Maraziotis, N. Papadakis, I. Varakis (1997)
Microvessel density in brain tumors.Anticancer research, 17 6D
Jing Zhao, Zhiyun Yang, B. Luo, Jian-yong Yang, J. Chu (2015)
Quantitative Evaluation of Diffusion and Dynamic Contrast-Enhanced MR in Tumor Parenchyma and Peritumoral Area for Distinction of Brain TumorsPLoS ONE, 10
R. Jain, S. Ellika, N. Lehman, L. Scarpace, L. Schultz, J. Rock, M. Rosenblum, T. Mikkelsen (2010)
Can permeability measurements add to blood volume measurements in differentiating tumefactive demyelinating lesions from high grade gliomas using perfusion CT?Journal of Neuro-Oncology, 97
N. Rani, Baljinder Singh, Narendra Kumar, Paramjit Singh, P. Hazari, A. Jaswal, S. Gupta, R. Chhabra, B. Radotra, A. Mishra (2020)
The diagnostic performance of 99mTc-methionine single-photon emission tomography in grading glioma preoperatively: a comparison with histopathology and Ki-67 indices.Nuclear Medicine Communications
S. Ellika, Rajan Jain, Suresh Patel, L. Scarpace, L. Schultz, Jack Rock, T. Mikkelsen (2007)
Role of Perfusion CT in Glioma Grading and Comparison with Conventional MR Imaging FeaturesAmerican Journal of Neuroradiology, 28
K. Miles (2006)
Perfusion imaging with computed tomography: brain and beyondEuropean Radiology Supplements, 16
S. Cho, D. Na, J. Ryoo, H. Roh, Chan Moon, H. Byun, Jong Kim (2002)
Perfusion MR Imaging: Clinical Utility for the Differential Diagnosis of Various Brain TumorsKorean Journal of Radiology, 3
(2016)
Dynamic Contrast-Enhanced and Dynamic Susceptibility Contrast Perfusion MR Imaging for Glioma Grading: Preliminary Comparison of Vessel Compartment and Permeability Parameters
L. Sunwoo, S. Choi, R. Yoo, Koung Kang, T. Yun, T. Kim, Se-Hoon Lee, Chul-Kee Park, Ji-hoon Kim, Sun-Won Park, C. Sohn, J. Won, Sung-Hye Park, I. Kim (2015)
Paradoxical perfusion metrics of high-grade gliomas with an oligodendroglioma component: quantitative analysis of dynamic susceptibility contrast perfusion MR imagingNeuroradiology, 57
Małgorzata Neska-Matuszewska, J. Bladowska, M. Sasiadek, A. Zimny (2018)
Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone—Searching for a practical approachPLoS ONE, 13
Shanshan Lu, Qianqian Gao, Jing Yu, Yang Li, Peng Cao, Haibin Shi, X-N Hong (2016)
Utility of dynamic contrast-enhanced magnetic resonance imaging for differentiating glioblastoma, primary central nervous system lymphoma and brain metastatic tumor.European journal of radiology, 85 10
E. Heynold, Max Zimmermann, N. Hore, M. Buchfelder, A. Doerfler, A. Stadlbauer, Natalia Kremenevski (2021)
Physiological MRI Biomarkers in the Differentiation Between Glioblastomas and Solitary Brain MetastasesMolecular Imaging and Biology, 23
Mohan Pauliah, Vipin Saxena, M. Haris, N. Husain, R. Rathore, Rakesh Gupta (2007)
Improved T(1)-weighted dynamic contrast-enhanced MRI to probe microvascularity and heterogeneity of human glioma.Magnetic resonance imaging, 25 9
R. Kamble, P. Jayakumar, Ravishankar Shivashankar (2015)
Role of dynamic CT perfusion study in evaluating various intracranial space-occupying lesionsThe Indian Journal of Radiology & Imaging, 25
P. Meier, K. Zierler (1954)
On the theory of the indicator-dilution method for measurement of blood flow and volume.Journal of applied physiology, 6 12
(2014)
Differentiation between VasogenicEdema versus Tumor-Infiltrative Area in Patients with Glioblastoma during Bevacizumab Therapy: A Longitudinal MRI Study
Jorn Fierstra, O. Sobczyk, A. Battisti‐Charbonney, D. Mandell, J. Poublanc, A. Crawley, D. Mikulis, James Duffin, Joseph Fisher (2013)
Measuring cerebrovascular reactivity: what stimulus to use?The Journal of Physiology, 591
A. Razek, Mona Talaat, L. El-Serougy, M. Abdelsalam, Gada Gaballa (2019)
Differentiating Glioblastomas from Solitary Brain Metastases Using Arterial Spin Labeling Perfusion- and Diffusion Tensor Imaging-Derived Metrics.World neurosurgery
(2015)
Recommended Implementation of Arterial Spin-Labeled Perfusion MRI for Clinical Applications: A Consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in DementiaMagn. Reson. Med., 73
Abdel-Monem Hasan, Abdel Hasan, Hasan Megally, M. Khallaf, Abolhasan Haseib (2019)
The combined role of MR spectroscopy and perfusion imaging in preoperative differentiation between high- and low-grade gliomasEgyptian Journal of Radiology and Nuclear Medicine, 50
Austin Trinh, M. Wintermark, M. Iv (2021)
Clinical Review of Computed Tomography and MR Perfusion Imaging in Neuro-Oncology.Radiologic clinics of North America, 59 3
M. Sebök, C. Niftrik, G. Muscas, A. Pangalu, K. Seystahl, M. Weller, L. Regli, J. Fierstra (2021)
Hypermetabolism and impaired cerebrovascular reactivity beyond the standard MRI-identified tumor border indicate diffuse glioma extended tissue infiltrationNeuro-oncology Advances, 3
K. Welker, J. Boxerman, A. Kalnin, T. Kaufmann, M. Shiroishi, Max Wintermark (2015)
ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the BrainAmerican Journal of Neuroradiology, 36
Alberto Delgado, Francesca Luca, D. Westen, Anna Delgado (2018)
Arterial spin labeling MR imaging for differentiation between high- and low-grade glioma—a meta-analysisNeuro-Oncology, 20
Shuangshuang Song, Leiming Wang, Hongwei Yang, Y. Shan, Ye Cheng, Lixin Xu, Chengyan Dong, Guoguang Zhao, Jie Lu (2020)
Static 18F-FET PET and DSC-PWI based on hybrid PET/MR for the prediction of gliomas defined by IDH and 1p/19q statusEuropean Radiology, 31
Lei Zhang, Liu-qing Yang, L. Wen, Shengyi Lv, Junhao Hu, Qing-Rui Li, Jian-ping Xu, Ru-Fu Xu, Dong Zhang (2020)
Noninvasively Evaluating the Grading of Glioma by Multiparametric Magnetic Resonance Imaging.Academic radiology
P. Schramm, A. Xyda, E. Klotz, V. Tronnier, M. Knauth, M. Hartmann (2010)
Dynamic CT perfusion imaging of intra-axial brain tumours: differentiation of high-grade gliomas from primary CNS lymphomasEuropean Radiology, 20
M. Lefranc, P. Monet, C. Desenclos, J. Peltier, A. Fichten, P. Toussaint, Henri Sevestre, H. Deramond, D. Gars (2012)
Perfusion MRI as a Neurosurgical Tool for Improved Targeting in Stereotactic Tumor BiopsiesStereotactic and Functional Neurosurgery, 90
J. Shin, H. Lee, B. Kwun, Jin-Suh Kim, Weechang Kang, C. Choi, D. Suh (2002)
Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results.AJR. American journal of roentgenology, 179 3
M. Spampinato, J. Smith, L. Kwock, M. Ewend, J. Grimme, Daniel Camacho, M. Castillo (2007)
Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors.AJR. American journal of roentgenology, 188 1
S. Sourbron, D. Buckley (2013)
Classic models for dynamic contrast‐enhanced MRINMR in Biomedicine, 26
D. Louis, A. Perry, P. Wesseling, D. Brat, I. Cree, D. Figarella-Branger, C. Hawkins, H. Ng, S. Pfister, G. Reifenberger, R. Soffietti, A. Deimling, D. Ellison (2021)
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.Neuro-oncology
L. Karegowda, R. Kadavigere, P. Shenoy, S. Paruthikunnan (2017)
Efficacy of Perfusion Computed Tomography (PCT) in Differentiating High-Grade Gliomas from Low Grade Gliomas, Lymphomas, Metastases and Abscess.Journal of clinical and diagnostic research : JCDR, 11 5
G. Conte, Luisa Altabella, A. Castellano, Valeria Cuccarini, A. Bizzi, Marco Grimaldi, Antonella Costa, Massimo Caulo, A. Falini, N. Anzalone (2019)
Comparison of T1 mapping and fixed T1 method for dynamic contrast-enhanced MRI perfusion in brain gliomasEuropean Radiology, 29
S. You, T. Yun, Hye Choi, R. Yoo, Koung Kang, S. Choi, Ji-hoon Kim, C. Sohn (2018)
Differentiation between primary CNS lymphoma and glioblastoma: qualitative and quantitative analysis using arterial spin labeling MR imagingEuropean Radiology, 28
J. Arevalo-Perez, K. Peck, R. Young, A. Holodny, S. Karimi, J. Lyo (2015)
Dynamic Contrast‐Enhanced Perfusion MRI and Diffusion‐Weighted Imaging in Grading of GliomasJournal of Neuroimaging, 25
Bei Ding, Hua-wei Ling, Ke-min Chen, Hong Jiang, Yan-bo Zhu (2006)
Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imagingNeuroradiology, 48
Junfeng Zhang, Heng Liu, Haipeng Tong, Sumei Wang, Yizeng Yang, G. Liu, Weiguo Zhang (2017)
Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current ChallengesContrast Media & Molecular Imaging, 2017
A. Maia, S. Malheiros, A. Rocha, C. Silva, A. Gabbai, F. Ferraz, J. Stávale (2005)
MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas.AJNR. American journal of neuroradiology, 26 4
Inger Havsteen, Janus Nybing, H. Christensen, A. Christensen (2018)
Arterial spin labeling: a technical overviewActa Radiologica, 59
Fei Gao, R. Guo, Xiao-jing Hu, Chunjing Li, Meng Li (2015)
Noninvasive Tumor Grading of Glioblastomas Before Surgery Using Arterial Spin Labeling. A Cohort Study.Analytical and quantitative cytopathology and histopathology, 37 6
C. Brendle, J. Hempel, J. Schittenhelm, M. Skardelly, G. Tabatabai, B. Bender, U. Ernemann, U. Klose (2018)
Glioma Grading and Determination of IDH Mutation Status and ATRX loss by DCE and ASL PerfusionClinical Neuroradiology, 28
P. Kickingereder, F. Sahm, B. Wiestler, Matthias Roethke, S. Heiland, H. Schlemmer, W. Wick, A. Deimling, M. Bendszus, A. Radbruch (2014)
Evaluation of Microvascular Permeability with Dynamic Contrast-Enhanced MRI for the Differentiation of Primary CNS Lymphoma and Glioblastoma: Radiologic-Pathologic CorrelationAmerican Journal of Neuroradiology, 35
R. Buxton (2013)
The physics of functional magnetic resonance imaging (fMRI)Reports on Progress in Physics, 76
C. Erdoğan, B. Hakyemez, N. Yıldırım, M. Parlak (2005)
Brain Abscess and Cystic Brain Tumor: Discrimination With Dynamic Susceptibility Contrast Perfusion-Weighted MRIJournal of Computer Assisted Tomography, 29
Y. Choi, Ho-Joon Lee, S. Ahn, Jong-Hee Chang, S. Kang, E. Kim, S. Kim, Seung-Koo Lee (2017)
Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficientEuropean Radiology, 27
B. McCullough, Valerie Ader, Brian Aguedan, Xu Feng, D. Susanto, Tara Benkers, J. Henson, M. Mayberg, C. Cobbs, R. Gwinn, S. Monteith, D. Newell, J. Delashaw, S. Fouke, S. Rostad, B. Keogh (2017)
Preoperative relative cerebral blood volume analysis in gliomas predicts survival and mitigates risk of biopsy sampling errorJournal of Neuro-Oncology, 136
Jessica Zhang, K. Traylor, J. Mountz (2020)
PET and SPECT Imaging of Brain Tumors.Seminars in ultrasound, CT, and MR, 41 6
M. Lee, Grayson Baird, Laura Bell, C. Quarles, J. Boxerman, J. Boxerman (2019)
Utility of Percentage Signal Recovery and Baseline Signal in DSC-MRI Optimized for Relative CBV Measurement for Differentiating Glioblastoma, Lymphoma, Metastasis, and MeningiomaAmerican Journal of Neuroradiology, 40
M. Shiroishi, G. Castellazzi, J. Boxerman, Francesco D’Amore, M. Essig, T. Nguyen, J. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, À. Rovira, M. Wintermark, M. Law (2015)
Principles of T2*‐weighted dynamic susceptibility contrast MRI technique in brain tumor imagingJournal of Magnetic Resonance Imaging, 41
S. Cha, Sean Pierce, E. Knopp, G. Johnson, Clement Yang, A. Ton, A. Litt, D. Zagzag (2001)
Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions.AJNR. American journal of neuroradiology, 22 6
E. Hoeffner (2005)
Cerebral Perfusion ImagingJournal of Neuro-Ophthalmology, 25
Zhen Xing, R. You, J. Li, Ying Liu, D. Cao (2014)
Differentiation of Primary Central Nervous System Lymphomas from High-Grade Gliomas by rCBV and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR ImagingClinical Neuroradiology, 24
Paige Lundy, J. Domino, T. Ryken, S. Fouke, D. McCracken, D. Ormond, J. Olson (2020)
The role of imaging for the management of newly diagnosed glioblastoma in adults: a systematic review and evidence-based clinical practice guideline updateJournal of Neuro-Oncology, 150
C. Suh, H. Kim, S. Jung, Ji Park, C. Choi, Sang Kim (2019)
MRI as a diagnostic biomarker for differentiating primary central nervous system lymphoma from glioblastoma: A systematic review and meta‐analysisJournal of Magnetic Resonance Imaging, 50
J. Chen, C. Gauthier (2021)
The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRIFrontiers in Physiology, 12
A. Xyda, U. Haberland, E. Klotz, K. Jung, H. Bock, R. Schramm, M. Knauth, P. Schramm (2012)
Diagnostic performance of whole brain volume perfusion CT in intra-axial brain tumors: preoperative classification accuracy and histopathologic correlation.European journal of radiology, 81 12
C. Quarles, L. Bell, A. Stokes (2019)
Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRINeuroImage, 187
S. Mills, T. Patankar, H. Haroon, D. Baleriaux, R. Swindell, A. Jackson (2006)
Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma?AJNR. American journal of neuroradiology, 27 4
Longlong Wang, Lizhou Wei, Jingjian Wang, Naixiang Li, Yan-Zhong Gao, Houlian Ma, Xin-Hua Qu, Ming Zhang (2020)
Evaluation of perfusion MRI value for tumor progression assessment after glioma radiotherapyMedicine, 99
Shumpei Onishi, Y. Kajiwara, Takeshi Takayasu, Manish Kolakshyapati, M. Ishifuro, V. Amatya, Y. Takeshima, K. Sugiyama, K. Kurisu, F. Yamasaki (2018)
Perfusion Computed Tomography Parameters Are Useful for Differentiating Glioblastoma, Lymphoma, and Metastasis.World neurosurgery, 119
X.-X. Xu, X.-X. Xu, Bing Li, Han-Feng Yang, Yong Du, Yang Li, W-X Wang, H. Zheng, Qiyong Gong (2014)
Can diffusion-weighted imaging be used to differentiate brain abscess from other ring-enhancing brain lesions? A meta-analysis.Clinical radiology, 69 9
(2011)
Magnetic Resonance Imaging–Based Cerebrovascular Reactivity and Hemodynamic Reserve
L. Lüdemann, C. Warmuth, M. Plotkin, A. Förschler, M. Gutberlet, P. Wust, H. Amthauer (2009)
Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography.European journal of radiology, 70 3
Katsuya Komatsu, M. Wanibuchi, T. Mikami, Y. Akiyama, Satoshi Iihoshi, K. Miyata, Toshiya Sugino, Kengo Suzuki, A. Kanno, Shouhei Noshiro, Shunya Ohtaki, N. Mikuni (2018)
Arterial Spin Labeling Method as a Supplemental Predictor to Distinguish Between High- and Low-Grade Gliomas.World neurosurgery, 114
C. Suh, H. Kim, S. Jung, C. Choi, Sang Kim (2018)
Perfusion MRI as a diagnostic biomarker for differentiating glioma from brain metastasis: a systematic review and meta-analysisEuropean Radiology, 28
D. Attwell, A. Buchan, S. Charpak, M. Lauritzen, B. MacVicar, E. Newman (2010)
Glial and neuronal control of brain blood flowNature, 468
A. Cianfoni, C. Colosimo, M. Basile, M. Wintermark, L. Bonomo (2007)
Brain perfusion CT: Principles, technique and clinical applicationsLa radiologia medica, 112
L. Sunwoo, T. Yun, S. You, R. Yoo, Koung Kang, S. Choi, Ji-hoon Kim, C. Sohn, Sun-Won Park, C. Jung, Chul-Kee Park (2016)
Differentiation of Glioblastoma from Brain Metastasis: Qualitative and Quantitative Analysis Using Arterial Spin Labeling MR ImagingPLoS ONE, 11
A. Zikou, C. Sioka, G. Alexiou, A. Fotopoulos, S. Voulgaris, M. Argyropoulou (2018)
Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated GliomasContrast Media & Molecular Imaging, 2018
H. Mutsaerts, J. Petr, Paul Groot, P. Vandemaele, S. Ingala, Andrew Robertson, L. Václavů, I. Groote, H. Kuijf, F. Zelaya, O. O'Daly, S. Hilal, A. Wink, Ilse Kant, M. Caan, Catherine Morgan, J. Bresser, E. Lysvik, A. Schrantee, A. Bjørnebekk, Patricia Clement, Zahra Shirzadi, J. Kuijer, U. Anazodo, D. Pajkrt, E. Richard, R. Bokkers, L. Reneman, M. Masellis, M. Günther, B. MacIntosh, E. Achten, M. Chappell, M. Osch, X. Golay, David Thomas, E. Vita, A. Bjørnerud, A. Nederveen, J. Hendrikse, I. Asllani, F. Barkhof (2019)
ExploreASL: An image processing pipeline for multi-center ASL perfusion MRI studiesNeuroImage, 219
R. Tupý, H. Mírka, J. Mraček, V. Priban, O. Hes, S. Vokurka, J. Ferda (2018)
Tumor-related Perfusion Changes in White Matter Adjacent to Brain Tumors: Pharmacodynamic Analysis of Dynamic 3T Magnetic Resonance ImagingAntiCancer Research, 38
Peng Wang, Jianrui Li, Q. Diao, Yuankai Lin, Jun Zhang, Lin Li, Gang Yang, X. Fang, Xie Li, Yingqian Chen, Ling Zheng, Guangming Lu (2016)
Assessment of glioma response to radiotherapy using 3D pulsed-continuous arterial spin labeling and 3D segmented volume.European journal of radiology, 85 11
N. Verburg, P. Hamer (2020)
State-of-the-art imaging for glioma surgeryNeurosurgical Review, 44
Giovanni Muscas, Christiaan Niftrik, M. Sebök, K. Seystahl, M. Piccirelli, Christoph Stippich, Michael Weller, Luca Regli, J. Fierstra (2020)
Hemodynamic investigation of peritumoral impaired blood oxygenation-level dependent cerebrovascular reactivity in patients with diffuse glioma.Magnetic resonance imaging
Xiao-wei Kang, Yi-bin Xi, Ting-ting Liu, Ning Wang, Yuan-Qiang Zhu, Xing-rui Wang, Fan Guo (2020)
Grading of Glioma: combined diagnostic value of amide proton transfer weighted, arterial spin labeling and diffusion weighted magnetic resonance imagingBMC Medical Imaging, 20
G. Alexiou, A. Zikou, S. Tsiouris, A. Goussia, P. Kosta, A. Papadopoulos, S. Voulgaris, A. Kyritsis, A. Fotopoulos, M. Argyropoulou (2014)
Correlation of diffusion tensor, dynamic susceptibility contrast MRI and 99mTc-Tetrofosmin brain SPECT with tumour grade and Ki-67 immunohistochemistry in gliomaClinical Neurology and Neurosurgery, 116
C. Warmuth, M. Gunther, C. Zimmer (2003)
Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging.Radiology, 228 2
K. Shin, K. Ahn, H. Choi, So-Lyung Jung, B. Kim, S. Jeon, Yong-Kil Hong (2014)
DCE and DSC MR perfusion imaging in the differentiation of recurrent tumour from treatment-related changes in patients with glioma.Clinical radiology, 69 6
N. Rollin, J. Guyotat, N. Streichenberger, J. Honnorat, V. Minh, F. Cotton (2006)
Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumorsNeuroradiology, 48
K. Hoang-Xuan, E. Bessell, J. Bromberg, A. Hottinger, M. Preusser, R. Rudà, U. Schlegel, T. Siegal, C. Soussain, U. Abacioglu, N. Cassoux, M. Deckert, C. Dirven, A. Ferreri, F. Graus, R. Henriksson, U. Herrlinger, M. Taphoorn, R. Soffietti, M. Weller (2015)
Diagnosis and treatment of primary CNS lymphoma in immunocompetent patients: guidelines from the European Association for Neuro-Oncology.The Lancet. Oncology, 16 7
Ningning Di, Ningning Di, Wenna Cheng, H. Chen, F. Zhai, Y. Liu, X. Mu, Z. Chu, N. Lu, Xinjiang Liu, Bin Wang (2019)
Utility of arterial spin labelling MRI for discriminating atypical high-grade glioma from primary central nervous system lymphoma.Clinical radiology, 74 2
M. Bendini, E. Marton, A. Feletti, S. Rossi, S. Curtolo, I. Inches, Monica Ronzon, P. Longatti, F. Paola (2011)
Primary and metastatic intraaxial brain tumors: prospective comparison of multivoxel 2D chemical-shift imaging (CSI) proton MR spectroscopy, perfusion MRI, and histopathological findings in a group of 159 patientsActa Neurochirurgica, 153
C. Willie, Y. Tzeng, J. Fisher, P. Ainslie (2014)
Integrative regulation of human brain blood flowThe Journal of Physiology, 592
Y. Qu, Lisui Zhou, Jie Jiang, Guangnan Quan, Xiaocheng Wei (2019)
Combination of three-dimensional arterial spin labeling and stretched-exponential model in grading of gliomasMedicine, 98
N. Telischak, J. Detre, G. Zaharchuk (2015)
Arterial spin labeling MRI: Clinical applications in the brainJournal of Magnetic Resonance Imaging, 41
D. Grewal, U. Rajesh, C. Sreedhar, S. Awasthi, C. Vijayakumar (2020)
Evaluation of Brain Tumours using Magnetic Resonance Perfusion Imaging: A Prospective StudyJournal of Clinical and Diagnostic Research
P. Gupta, J. Saini, P. Sahoo, R. Patir, Sunita Ahlawat, Manish Beniwal, K. Thennarasu, V. Santosh, Rakesh Gupta (2017)
Role of Dynamic Contrast-Enhanced Perfusion Magnetic Resonance Imaging in Grading of Pediatric Brain Tumors on 3TPediatric Neurosurgery, 52
X. Golay, E. Petersen (2006)
Arterial spin labeling: benefits and pitfalls of high magnetic field.Neuroimaging clinics of North America, 16 2
S. Hiremath, A. Muraleedharan, S. Kumar, C. Nagesh, C. Kesavadas, M. Abraham, T. Kapilamoorthy, B. Thomas (2017)
Combining Diffusion Tensor Metrics and DSC Perfusion Imaging: Can It Improve the Diagnostic Accuracy in Differentiating Tumefactive Demyelination from High-Grade Glioma?American Journal of Neuroradiology, 38
R. Mangla, B. Kolar, T. Zhu, J. Zhong, J. Almast, S. Ekholm (2011)
Percentage Signal Recovery Derived from MR Dynamic Susceptibility Contrast Imaging Is Useful to Differentiate Common Enhancing Malignant Lesions of the BrainAmerican Journal of Neuroradiology, 32
B. Jung, J. Arevalo-Perez, J. Lyo, A. Holodny, S. Karimi, R. Young, K. Peck (2016)
Comparison of Glioblastomas and Brain Metastases using Dynamic Contrast‐Enhanced Perfusion MRIJournal of Neuroimaging, 26
V. Stumpo, M. Sebök, C. Niftrik, K. Seystahl, N. Hainc, Z. Kulcsár, M. Weller, L. Regli, J. Fierstra (2021)
Feasibility of glioblastoma tissue response mapping with physiologic BOLD imaging using precise oxygen and carbon dioxide challengeMagnetic Resonance Materials in Physics, Biology and Medicine, 35
J. Fisher, D. Mikulis (2021)
Cerebrovascular Reactivity: Purpose, Optimizing Methods, and Limitations to Interpretation – A Personal 20-Year Odyssey of (Re)searchingFrontiers in Physiology, 12
S. Wetzel, S. Cha, G. Johnson, Peter Lee, M. Law, D. Kasow, Sean Pierce, X. Xue (2002)
Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study.Radiology, 224 3
A. Delgado, A. Delgado (2017)
Discrimination between Glioma Grades II and III Using Dynamic Susceptibility Perfusion MRI: A Meta-AnalysisAmerican Journal of Neuroradiology, 38
S. Leon, R. Folkerth, P. Black (1996)
Microvessel density is a prognostic indicator for patients with astroglial brain tumorsCancer, 77
M. Essig, M. Shiroishi, T. Nguyen, M. Saake, J. Provenzale, D. Enterline, N. Anzalone, A. Dörfler, À. Rovira, M. Wintermark, M. Law (2013)
Perfusion MRI: the five most frequently asked technical questions.AJR. American journal of roentgenology, 200 1
S. Cha, J. Lupo, M.-H. Chen, K. Lamborn, M. McDermott, Mitchel Berger, S. Nelson, W. Dillon (2007)
Differentiation of Glioblastoma Multiforme and Single Brain Metastasis by Peak Height and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR ImagingAmerican Journal of Neuroradiology, 28
J. Saini, Rakesh Gupta, M. Kumar, Anup Singh, I. Saha, V. Santosh, Manish Beniwal, Thennarasu Kandavel, M. Cauteren (2019)
Comparative evaluation of cerebral gliomas using rCBV measurements during sequential acquisition of T1-perfusion and T2*-perfusion MRIPLoS ONE, 14
Ning Wang, Shu-yi Xie, Hui-ming Liu, Guojun Chen, Wei-Dong Zhang (2019)
Arterial Spin Labeling for Glioma Grade Discrimination: Correlations with IDH1 Genotype and 1p/19q StatusTranslational Oncology, 12
Timothy Yeung, G. Bauman, S. Yartsev, E. Fainardi, D. Macdonald, Ting-Yim Lee (2015)
Dynamic perfusion CT in brain tumors.European journal of radiology, 84 12
J. Kane (2019)
The Role of Brain Vasculature in GlioblastomaMolecular Neurobiology, 56
C. Muccio, F. Caranci, F. D’Arco, A. Cerase, Luca Lipsis, G. Esposito, E. Tedeschi, Cosma Andreula (2014)
Magnetic resonance features of pyogenic brain abscesses and differential diagnosis using morphological and functional imaging studies: a pictorial essay.Journal of neuroradiology. Journal de neuroradiologie, 41 3
K. Emblem, D. Scheie, P. Due-Tønnessen, B. Nedregaard, T. Nome, J. Hald, K. Beiske, T. Meling, A. Bjørnerud (2008)
Histogram Analysis of MR Imaging–Derived Cerebral Blood Volume Maps: Combined Glioma Grading and Identification of Low-Grade Oligodendroglial SubtypesAmerican Journal of Neuroradiology, 29
J. Boxerman, K. Schmainda, R. Weisskoff (2006)
Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not.AJNR. American journal of neuroradiology, 27 4
Stacey Watkins, S. Robel, Ian Kimbrough, S. Robert, G. Ellis‐Davies, H. Sontheimer (2014)
Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cellsNature communications, 5
Rongli Wu, Yoshiyuki Watanabe, Atsuko Arisawa, Hiroto Takahashi, Hisashi Tanaka, Y. Fujimoto, T. Watabe, K. Isohashi, J. Hatazawa, N. Tomiyama (2017)
Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma gradingJapanese Journal of Radiology, 35
R. Buxton, L. Frank, E. Wong, Bettina Siewert, S. Warach, R. Edelman (1998)
A general kinetic model for quantitative perfusion imaging with arterial spin labelingMagnetic Resonance in Medicine, 40
M. Kim, A. Adji, M. O'Rourke, A. Avolio, P. Smielewski, J. Pickard, M. Czosnyka (2015)
Principles of cerebral hemodynamics when intracranial pressure is raised: lessons from the peripheral circulationJournal of Hypertension, 33
M. Wintermark, M. Sesay, E. Barbier, K. Borbély, W. Dillon, J. Eastwood, T. Glenn, C. Grandin, S. Pedraza, J. Soustiel, T. Nariai, G. Zaharchuk, J. Caillé, V. Dousset, H. Yonas (2005)
Comparative Overview of Brain Perfusion Imaging TechniquesStroke, 36
M. Slessarev, Jay Han, A. Mardimae, E. Prisman, D. Preiss, G. Volgyesi, Clifford Ansel, J. Duffin, J. Fisher (2007)
Prospective targeting and control of end‐tidal CO2 and O2 concentrationsThe Journal of Physiology, 581
D. Jacobs, P. Kumthekar, B. Stell, S. Grimm, A. Rademaker, L. Rice, J. Chandler, K. Muro, M. Marymont, I. Helenowski, L. Wagner, J. Raizer (2014)
Concordance of patient and caregiver reports in evaluating quality of life in patients with malignant gliomas and an assessment of caregiver burden.Neuro-oncology practice, 1 2
S. Agarwal, H. Sair, J. Pillai (2021)
The Problem of Neurovascular Uncoupling.Neuroimaging clinics of North America, 31 1
J. Yoon, Ji-hoon Kim, W. Kang, C. Sohn, S. Choi, T. Yun, Y. Eun, Y. Song, K. Chang (2014)
Grading of Cerebral Glioma with Multiparametric MR Imaging and 18F-FDG-PET: Concordance and AccuracyEuropean Radiology, 24
F. Calamante (2013)
Arterial input function in perfusion MRI: a comprehensive review.Progress in nuclear magnetic resonance spectroscopy, 74
M. Weller, M. Bent, M. Preusser, É. Rhun, J. Tonn, G. Minniti, M. Bendszus, C. Balañà, O. Chinot, L. Dirven, P. French, M. Hegi, A. Jakola, M. Plattén, P. Roth, R. Rudà, S. Short, M. Smits, M. Taphoorn, A. Deimling, M. Westphal, R. Soffietti, G. Reifenberger, W. Wick (2020)
EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthoodNature Reviews. Clinical Oncology, 18
Sofie Cauter, F. Keyzer, D. Sima, A. Sava, F. D’Arco, J. Veraart, R. Peeters, A. Leemans, S. Gool, G. Wilms, P. Demaerel, S. Huffel, S. Sunaert, U. Himmelreich (2014)
Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas.Neuro-oncology, 16 7
K. Kikuchi, A. Hiwatashi, O. Togao, K. Yamashita, Ryotaro Kamei, M. Kitajima, M. Kanoto, Hiroto Takahashi, Y. Uchiyama, M. Harada, Y. Shinohara, T. Yoshiura, Yuki Wakata, H. Honda (2018)
Usefulness of perfusion- and diffusion-weighted imaging to differentiate between pilocytic astrocytomas and high-grade gliomas: a multicenter study in JapanNeuroradiology, 60
Hong Ma, Zizheng Wang, K. Xu, Zefeng Shao, Chun Yang, Peng Xu, Xiaohua Liu, Chunfeng Hu, Xin Lu, Y. Rong (2017)
Three-dimensional arterial spin labeling imaging and dynamic susceptibility contrast perfusion-weighted imaging value in diagnosing glioma grade prior to surgeryExperimental and Therapeutic Medicine, 13
Q. D’Alessandris, Simone Pacioni, V. Stumpo, Mariachiara Buccarelli, L. Lauretti, M. Giordano, Rina Bonaventura, M. Martini, L. Larocca, S. Giannetti, N. Montano, M. Falchetti, L. Ricci-Vitiani, R. Pallini (2021)
Dilation of Brain Veins and Perivascular Infiltration by Glioblastoma Cells in an In Vivo Assay of Early Tumor AngiogenesisBioMed Research International, 2021
N. Bulakbaşı, M. Kocaoglu, Anar Farzaliyev, C. Tayfun, T. Ucoz, I. Somuncu (2005)
Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors.AJNR. American journal of neuroradiology, 26 9
Amirah Alsaedi, F. Doniselli, H. Jäger, J. Panovska-Griffiths, A. Rojas-García, X. Golay, S. Bisdas (2019)
The value of arterial spin labelling in adults glioma grading: systematic review and meta-analysisOncotarget, 10
Hatham Alkanhal, K. Das, Harish Poptani (2020)
Diffusion and perfusion weighted magnetic resonance imaging methods in non-enhancing gliomas.World neurosurgery
Min Fu, F. Han, Changchao Feng, Tao Chen, Xiao-bing Feng (2019)
Based on arterial spin labeling helps to differentiate high-grade gliomas from brain solitary metastasisMedicine, 98
B. Hakyemez, C. Erdoğan, N. Bolca, N. Yıldırım, G. Gokalp, M. Parlak (2006)
Evaluation of different cerebral mass lesions by perfusion‐weighted MR imagingJournal of Magnetic Resonance Imaging, 24
S. Gaudino, M. Benenati, M. Martucci, A. Botto, A. Infante, A. Marrazzo, A. Ramaglia, Giammaria Marziali, P. Guadalupi, C. Colosimo (2020)
Investigating dynamic susceptibility contrast-enhanced perfusion-weighted magnetic resonance imaging in posterior fossa tumors: differences and similarities with supratentorial tumorsLa radiologia medica, 125
Hyungjin Kim, Seung-Hong Choi, Ji-hoon Kim, I. Ryoo, Soo Kim, Jeong Yeom, Hwaseon Shin, Seung Jung, A. Lee, T. Yun, Chul-Kee Park, C. Sohn, Sung-Hye Park (2013)
Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor GradingPLoS ONE, 8
(2020)
Differentiating Nonenhancing Grade II Gliomas from Grade III Gliomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI. World Neurosurg
D. Louis, H. Ohgaki, O. Wiestler, W. Cavenee, P. Burger, A. Jouvet, B. Scheithauer, P. Kleihues (2007)
The 2007 WHO Classification of Tumours of the Central Nervous SystemActa Neuropathologica, 114
(1997)
Varakis, I. Microvessel Density in Brain Tumors
J. Villanueva-Meyer, M. Mabray, S. Cha (2017)
Current Clinical Brain Tumor ImagingNeurosurgery, 81
B. Ellingson, M. Bendszus, J. Boxerman, D. Barboriak, B. Erickson, M. Smits, S. Nelson, E. Gerstner, B. Alexander, G. Goldmacher, W. Wick, M. Vogelbaum, M. Weller, E. Galanis, Jayashree Kalpathy-Cramer, L. Shankar, P. Jacobs, W. Pope, Dewen Yang, C. Chung, M. Knopp, S. Cha, M. Bent, Susan Chang, W. Yung, T. Cloughesy, P. Wen, M. Gilbert (2015)
Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials.Neuro-oncology, 17 9
M. Haris, N. Husain, Anup Singh, M. Husain, Savita Srivastava, C. Srivastava, S. Behari, R. Rathore, S. Saksena, Rakesh Gupta (2008)
Dynamic Contrast-Enhanced Derived Cerebral Blood Volume Correlates Better With Leak Correction Than With No Correction for Vascular Endothelial Growth Factor, Microvascular Density, and Grading of AstrocytomaJournal of Computer Assisted Tomography, 32
X. Lin, M. Lee, O. Buck, K. Woo, Z. Zhang, V. Hatzoglou, A. Omuro, J. Arevalo-Perez, A.A. Thomas, J. Huse, K. Peck, A. Holodny, R. Young (2016)
Diagnostic Accuracy of T1-Weighted Dynamic Contrast-Enhanced–MRI and DWI-ADC for Differentiation of Glioblastoma and Primary CNS LymphomaAmerican Journal of Neuroradiology, 38
M. Weller, P. Martus, P. Roth, E. Thiel, A. Korfel (2012)
Surgery for primary CNS lymphoma? Challenging a paradigm.Neuro-oncology, 14 12
K Smitha, A Gupta, R. Jayasree (2015)
Relative percentage signal intensity recovery of perfusion metrics—an efficient tool for differentiating grades of glioma.The British journal of radiology, 88 1052
Y. Tzeng, P. Ainslie (2013)
Blood pressure regulation IX: cerebral autoregulation under blood pressure challengesEuropean Journal of Applied Physiology, 114
I. Sorribes, Matthew Moore, Helen Byrne, H. Jain (2018)
A Biomechanical Model of Tumor-induced Intracranial Pressure and Edema in Brain TissuebioRxiv
S. Agnihotri, G. Zadeh (2016)
Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions.Neuro-oncology, 18 2
R. Stupp, Warren Mason, M. Bent, M. Weller, B. Fisher, M. Taphoorn, K. Bélanger, A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, Robert Janzer, Samuel Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. Cairncross, E. Eisenhauer, R. Mirimanoff (2005)
Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.The New England journal of medicine, 352 10
L. Rizzo, S. Crasto, P. Moruno, Paola Cassoni, R. Ruda, R. Boccaletti, M. Brosio, R. Lucchi, Cesare Fava (2009)
Role of diffusion- and perfusion-weighted MR imaging for brain tumour characterisationLa radiologia medica, 114
F. Comte, L. Bauchet, V. Rigau, J. Hauet, M. Fabbro, P. Coubes, J. Chevalier, D. Mariano-Goulart, Michel Rossi, M. Zanca (2006)
Correlation of preoperative thallium SPECT with histological grading and overall survival in adult gliomasNuclear Medicine Communications, 27
J. Abrigo, D. Fountain, J. Provenzale, E. Law, J. Kwong, M. Hart, W. Tam (2015)
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.The Cochrane database of systematic reviews, 1
F. Calamante, Thomas, Pell, jJonna Wiersma, jRobert Turner (2011)
Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques
V. Li, C. Ab, J. Folkman, R. Scott, P. Black, R. Folkerth, P. Barnes, S. Sallan, M. Rupnick, H. Watanabe (1994)
Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumoursThe Lancet, 344
G. Seano, R. Jain (2019)
Vessel co-option in glioblastoma: emerging insights and opportunitiesAngiogenesis, 23
S. Blasel, W. Pfeilschifter, V. Jansen, Klaus Mueller, F. Zanella, E. Hattingen (2010)
Metabolism and regional cerebral blood volume in autoimmune inflammatory demyelinating lesions mimicking malignant gliomasJournal of Neurology, 258
I. Aprile, G. Giovannelli, P. Fiaschini, M. Muti, A. Kouleridou, N. Caputo (2015)
High- and low-grade glioma differentiation: the role of percentage signal recovery evaluation in MR dynamic susceptibility contrast imagingLa radiologia medica, 120
P. Delgado-López, E. Riñones-Mena, E. Corrales-García (2018)
Treatment-related changes in glioblastoma: a review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosisClinical and Translational Oncology, 20
D. Louis, A. Perry, G. Reifenberger, A. Deimling, D. Figarella-Branger, W. Cavenee, H. Ohgaki, O. Wiestler, P. Kleihues, D. Ellison (2016)
The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summaryActa Neuropathologica, 131
C. Arvanitis, G. Ferraro, R. Jain (2019)
The blood–brain barrier and blood–tumour barrier in brain tumours and metastasesNature Reviews Cancer, 20
Jisook Lee, Caren Lund-Smith, Alexandra Borboa, A. González, A. Baird, B. Eliceiri (2009)
Glioma-induced remodeling of the neurovascular unitBrain Research, 1288
Agnès Aubert, R. Costalat, H. Duffau, H. Benali (2002)
Modeling of Pathophysiological Coupling between Brain Electrical Activation, Energy Metabolism and Hemodynamics: Insights for the Interpretation of Intracerebral Tumor ImagingActa Biotheoretica, 50
O. Neiman, S. Sadetzki, A. Chetrit, S. Raskin, G. Yaniv, C. Hoffmann (2013)
Perfusion-weighted imaging of peritumoral edema can aid in the differential diagnosis of glioblastoma mulltiforme versus brain metastasis.The Israel Medical Association journal : IMAJ, 15 2
Lin Lin, Yunjing Xue, Q. Duan, Bin Sun, Hai-long Lin, Xinming Huang, Xiaodan Chen (2016)
The role of cerebral blood flow gradient in peritumoral edema for differentiation of glioblastomas from solitary metastatic lesionsOncotarget, 7
D. Alsop, J. Detre, X. Golay, M. Günther, J. Hendrikse, L. Hernandez-Garcia, Hanzhang Lu, B. MacIntosh, L. Parkes, M. Smits, M. Osch, Danny Wang, E. Wong, G. Zaharchuk (2015)
Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia.Magnetic resonance in medicine, 73 1
T. Nguyen, G. Cron, J. Mercier, C. Foottit, C. Torres, S. Chakraborty, J. Woulfe, G. Jansen, J. Caudrelier, J. Sinclair, M. Hogan, R. Thornhill, I. Cameron (2015)
Preoperative Prognostic Value of Dynamic Contrast-Enhanced MRI–Derived Contrast Transfer Coefficient and Plasma Volume in Patients with Cerebral GliomasAmerican Journal of Neuroradiology, 36
P. Warnke, J. Timmer, C. Ostertag, K. Kopitzki (2005)
Capillary physiology and drug delivery in central nervous system lymphomasAnnals of Neurology, 57
J. Perthen, F. Calamante, D. Gadian, A. Connelly (2002)
Is quantification of bolus tracking MRI reliable without deconvolution?Magnetic Resonance in Medicine, 47
Hakan Cebeci, Ömer Aydın, Esin Ozturk-Isik, C. Gumus, F. Inecikli, A. Bekar, H. Kocaeli, B. Hakyemez (2014)
Assesment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method.European journal of radiology, 83 10
Stéphane Kremer, S. Grand, Chantal Rémy, François Estève, Lefournier, B. Pasquier, Dominique Hoffmann, Benabid Al, Le Jf (2002)
Cerebral blood volume mapping by MR imaging in the initial evaluation of brain tumors.Journal of neuroradiology. Journal de neuroradiologie, 29 2
Takashi Hashido, S. Saito, T. Ishida (2020)
A radiomics-based comparative study on arterial spin labeling and dynamic susceptibility contrast perfusion-weighted imaging in gliomasScientific Reports, 10
Rajan Jain (2011)
Perfusion CT Imaging of Brain Tumors: An OverviewAmerican Journal of Neuroradiology, 32
(2005)
Comparative Overview of Brain Perfusion Imaging TechniquesJ. Neuroradiol., 32
K. Surendra, S. Patwari, Shishir Agrawal, H. Chadaga, Anita Nagadi (2020)
Percentage signal intensity recovery: A step ahead of rCBV in DSC MR perfusion imaging for the differentiation of common neoplasms of brainIndian Journal of Cancer, 57
K. Tateishi, U. Tateishi, M. Sato, Shoji Yamanaka, H. Kanno, H. Murata, T. Inoue, N. Kawahara (2013)
Application of 62Cu-Diacetyl-Bis (N4-Methylthiosemicarbazone) PET Imaging to Predict Highly Malignant Tumor Grades and Hypoxia-Inducible Factor-1α Expression in Patients with GliomaAmerican Journal of Neuroradiology, 34
Jochen Gaa, Steve Warach, Steve Warach, Patrick Wen, V. Thangaraj, P Wielopolski, Robert Edelman (2004)
Noninvasive perfusion imaging of human brain tumors with EPISTAREuropean Radiology, 6
E. Fuster-García, J. Juan-Albarracín, Germán García-Ferrando, L. Martí-Bonmatí, F. Aparici-Robles, J. García-Gómez (2018)
Improving the estimation of prognosis for glioblastoma patients by MR based hemodynamic tissue signaturesNMR in Biomedicine, 31
S. Thust, M. Bent, M. Smits (2018)
Pseudoprogression of brain tumorsJournal of Magnetic Resonance Imaging, 48
Hirotaka Fudaba, T. Shimomura, T. Abe, H. Matsuta, Y. Momii, Kenji Sugita, H. Ooba, T. Kamida, T. Hikawa, M. Fujiki (2014)
Comparison of Multiple Parameters Obtained on 3T Pulsed Arterial Spin-Labeling, Diffusion Tensor Imaging, and MRS and the Ki-67 Labeling Index in Evaluating Glioma GradingAmerican Journal of Neuroradiology, 35
B. Roy, R. Awasthi, A. Bindal, P. Sahoo, Rajan Kumar, S. Behari, B. Ojha, N. Husain, C. Pandey, R. Rathore, Rakesh Gupta (2013)
Comparative Evaluation of 3-Dimensional Pseudocontinuous Arterial Spin Labeling With Dynamic Contrast-Enhanced Perfusion Magnetic Resonance Imaging in Grading of Human GliomaJournal of Computer Assisted Tomography, 37
Q. Ostrom, N. Patil, G. Cioffi, K. Waite, C. Kruchko, J. Barnholtz-Sloan (2020)
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017.Neuro-oncology, 22 Supplement_1
É. Rhun, M. Guckenberger, M. Smits, R. Dummer, T. Bachelot, F. Sahm, N. Galldiks, E. Azambuja, A. Berghoff, P. Métellus, S. Peters, Y-K Hong, F. Winkler, D. Schadendorf, M. Bent, J. Seoane, R. Stahel, G. Minniti, P. Wesseling, M. Weller, M. Preusser (2021)
EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours.Annals of oncology : official journal of the European Society for Medical Oncology
R. Awasthi, R. Rathore, Priyanka Soni, P. Sahoo, A. Awasthi, N. Husain, S. Behari, R. Singh, C. Pandey, Rakesh Gupta (2012)
Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markersNeuroradiology, 54
A. Tietze, Jens Boldsen, K. Mouridsen, L. Ribe, S. Dyve, S. Cortnum, L. Østergaard, P. Borghammer (2015)
Spatial distribution of malignant tissue in gliomas: correlations of 11C-L-methionine positron emission tomography and perfusion- and diffusion-weighted magnetic resonance imagingActa Radiologica, 56
A. Ulytė, V. Katsaros, E. Liouta, Georgios Stranjalis, C. Boskos, Nickolas Papanikolaou, J. Usinskiene, S. Bisdas (2016)
Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patientsNeuroradiology, 58
Meng Law, Robert Young, James Babb, M. Rad, T. Sasaki, D. Zagzag, Glyn Johnson (2006)
Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade.AJNR. American journal of neuroradiology, 27 9
K. Askaner, A. Rydelius, S. Engelholm, Linda Knutsson, J. Lätt, K. Abul-Kasim, P. Sundgren (2019)
Differentiation between glioblastomas and brain metastases and regarding their primary site of malignancy using dynamic susceptibility contrast MRI at 3T.Journal of neuroradiology. Journal de neuroradiologie
A. Tietze, K. Mouridsen, I. Mikkelsen (2015)
The impact of reliable prebolus T1 measurements or a fixed T1 value in the assessment of glioma patients with dynamic contrast enhancing MRINeuroradiology, 57
John Jr., Brendan Knapp, J. Uh, C. Hua, T. Merchant, Scott Hwang, Z. Patay, A. Broniscer (2018)
Posttreatment DSC-MRI is Predictive of Early Treatment Failure in Children with Supratentorial High-Grade Glioma Treated with ErlotinibClinical Neuroradiology, 28
S. Okuchi, A. Rojas-García, A. Ulytė, Ingeborg Lopez, J. Usinskiene, Martin Lewis, Sara Hassanein, E. Sanverdi, X. Golay, S. Thust, J. Panovska-Griffiths, S. Bisdas (2019)
Diagnostic accuracy of dynamic contrast‐enhanced perfusion MRI in stratifying gliomas: A systematic review and meta‐analysisCancer Medicine, 8
C. Toh, K. Wei, Chen-Nen Chang, S. Ng, H. Wong, Ching-Po Lin (2014)
Differentiation of Brain Abscesses from Glioblastomas and Metastatic Brain Tumors: Comparisons of Diagnostic Performance of Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging before and after Mathematic Contrast Leakage CorrectionPLoS ONE, 9
Olivier Darbin, M. Lonjon, M. Quentien, J. Michiels, P. Grellier, J. Negrín, Jean-Claude Rostain, J. Risso (2000)
In vivo study of tumor metabolism: an application of new multi-probe microdialysis system in the striatum of freely moving rats grafted with C6 cellsBrain Research, 881
Hua-feng Xiao, Zhiye Chen, X. Lou, Yu-lin Wang, Q. Gui, Yan Wang, Kai-ning Shi, Zhen-Yu Zhou, D. Zheng, Danny Wang, Lin Ma (2015)
Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imagingEuropean Radiology, 25
H. Fürst, W. Hartl, I. Janssen (1994)
Patterns of Cerebrovascular Reactivity in Patients With Unilateral Asymptomatic Carotid Artery StenosisStroke, 25
Adam Bauer, W. Erly, F. Moser, M. Maya, K. Nael (2015)
Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusionNeuroradiology, 57
R. Jain, E. Tomaso, D. Duda, J. Loeffler, A. Sorensen, T. Batchelor (2007)
Angiogenesis in brain tumoursNature Reviews Neuroscience, 8
Chaochao Wang, Haibo Dong (2019)
Ki-67 labeling index and the grading of cerebral gliomas by using intravoxel incoherent motion diffusion-weighted imaging and three-dimensional arterial spin labeling magnetic resonance imagingActa Radiologica, 61
Y. Choi, S. Ahn, Seung-Koo Lee, Jong-Hee Chang, S. Kang, S. Kim, Jinyuan Zhou (2017)
Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volumeEuropean Radiology, 27
Yuankai Lin, Jianrui Li, Zhiqiang Zhang, Qiang Xu, Zhenyu Zhou, Zhongping Zhang, Yong Zhang, Zong-jun Zhang (2015)
Comparison of Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging and Arterial Spin Labeling MR Imaging in GliomasBioMed Research International, 2015
S. Strauss, Alicia Meng, E. Ebani, G. Chiang (2019)
Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis.Radiologic clinics of North America, 57 6
G. Johnson, S. Wetzel, S. Cha, J. Babb, P. Tofts (2004)
Measuring blood volume and vascular transfer constant from dynamic, T 2* ‐weighted contrast‐enhanced MRIMagnetic Resonance in Medicine, 51
I. Chiang, Tsyh-Jyi Hsieh, Ming-Lun Chiu, G-C. Liu, Y. Kuo, W.-C. Lin (2009)
Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion and perfusion imaging.The British journal of radiology, 82 982
Hatham Alkanhal, K. Das, N. Rathi, K. Syed, Harish Poptani (2020)
Differentiating non enhancing grade II gliomas from grade III gliomas using diffusion tensor imaging and dynamic susceptibility contrast MRI.World neurosurgery
cancers Review Hemodynamic Imaging in Cerebral Diffuse Glioma—Part A: Concept, Differential Diagnosis and Tumor Grading 1 , 2 , † 1 , 2 , , † 1 , 2 1 , 2 Lelio Guida , Vittorio Stumpo * , Jacopo Bellomo , Christiaan Hendrik Bas van Niftrik , 1 , 2 3 2 , 4 2 , 5 2 , 4 1 , 2 Martina Sebök , Moncef Berhouma , Andrea Bink , Michael Weller , Zsolt Kulcsar , Luca Regli 1 , 2 and Jorn Fierstra Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; [email protected] (L.G.); [email protected] (J.B.); [email protected] (C.H.B.v.N.); [email protected] (M.S.); [email protected] (L.R.); jorn.fi[email protected] (J.F.) Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; [email protected] (A.B.); [email protected] (M.W.); [email protected] (Z.K.) Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France; [email protected] Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland * Correspondence: [email protected] † These authors contributed equally to this work. Simple Summary: Diffuse gliomas, and glioblastomas, in particular, represent a diagnostic and clinical challenge. Standard neuroimaging continues to have many limitations for accurate diagnostic assessment, resection planning and treatment follow-up. The present two-review series comprehen- sively summarizes recent evidence on hemodynamic imaging applications in the context of diffuse Citation: Guida, L.; Stumpo, V.; cerebral glioma. Part A provides an overview of the concepts underlying hemodynamic imaging Bellomo, J.; van Niftrik, C.H.B.; modalities and critically discusses the diffuse glioma differential diagnosis and tumor grading results Sebök, M.; Berhouma, M.; Bink, A.; reported in the literature. Weller, M.; Kulcsar, Z.; Regli, L.; et al. Hemodynamic Imaging in Cerebral Abstract: Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside Diffuse Glioma—Part A: Concept, from the challenges pertaining to their treatment—glioblastomas, in particular, have a dismal prog- Differential Diagnosis and Tumor nosis and are currently incurable—their pre-operative assessment using standard neuroimaging Grading. Cancers 2022, 14, 1432. has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor https://doi.org/10.3390/ subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection cancers14061432 planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant Academic Editor: Brigitta G. vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has Baumert attracted considerable interest as a means to improve diffuse glioma characterization. In the present Received: 1 February 2022 part A of our two-review series, the fundamental concepts, techniques and parameters of hemody- Accepted: 8 March 2022 namic imaging are discussed in conjunction with their potential role in the differential diagnosis Published: 10 March 2022 and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed Publisher’s Note: MDPI stays neutral together with perfusion-computed tomography. While these techniques have provided encouraging with regard to jurisdictional claims in published maps and institutional affil- results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized iations. acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers. Keywords: hemodynamic; cerebral glioma; glioblastoma; perfusion computed tomography; MRI; Copyright: © 2022 by the authors. perfusion MRI; cerebrovascular reactivity Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons 1. Introduction Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ Cerebral diffuse gliomas are the most malignant primary and frequently diagnosed 4.0/). intracranial tumors [1,2]. The most common entity is represented by glioblastoma, an Cancers 2022, 14, 1432. https://doi.org/10.3390/cancers14061432 https://www.mdpi.com/journal/cancers Cancers 2022, 14, 1432 2 of 23 incurable brain tumor whose standard of care since the seminal trial by Stupp et al. has included temozolomide (TMZ) on top of radiotherapy (RT) following a maximally safe surgical resection [2,3]. Despite their low prevalence, these brain tumors are associated with a dismal prognosis, incommensurable emotional and social burden and high treatment costs [4,5]. The standard imaging protocol for suspected diffuse adult glioma evaluation includes different sequences of magnetic resonance imaging (MRI), such as pre- and post- gadolinium contrast-enhanced (CE-) T1-weighted imaging, T2-weighted sequences includ- ing Fluid Attenuated Inversion Recovery (FLAIR) imaging, which are often complemented by diffusion-weighted imaging, susceptibility-weighted sequences and perfusion-weighted imaging (PWI) for a more refined diagnostic imaging workup [2,6]. The drawbacks of morphological MRI sequences are well-recognized and result in a broader differential diagnosis because other lesions, such as cerebral lymphoma, metastasis and abscesses, can have a similar radiological presentation during standard neuroimaging [7]. Additional limitations include imprecise characterization of glioma grading and subtype allocation for treatment decisions [8], as well as suboptimal determination of the extent of tumor infiltra- tion for accurate resection planning [9]. Furthermore, challenges occur when differentiating glioma progression/recurrence from treatment-related effects such as radiation necrosis, pseudo-progression and pseudoresponse [10–13], as well as imprecise prognostication [14], whereby the different molecular alterations that are becoming more sophisticated and clinically relevant to define the disease entity can hardly be derived from the pre-operative MRI [15]. Of note, the WHO classification 2021 further defines adult diffuse gliomas based on a combined clinical and histological grading, whereby, for example, glioblastoma can be diagnosed only in the presence of IDH wild-type status (eliminating IDH mutant glioblas- toma), and astrocytoma, IDH mutant, now also includes a grade 4 variant [15]. Importantly, to date, histopathological diagnosis confirmation and molecular characterization remain the gold standard [15], but advanced imaging developments over the last three decades have fostered a variety of hemodynamic imaging investigations with the potential to pro- vide complementary information regarding tumor type, aggressiveness and molecular correlates [16–18] (Figure 1). Figure 1. Publication per years of different hemodynamic imaging modalities and gliomas. DSC and DCE-MRI have been the subject of more intense research in glioma imaging, followed by ASL-MRI and PCT. IVIM-DWI and BOLD-CVR can also provide different hemodynamic information and in recent years are becoming the focus of active research. These techniques and others have all been exploited to foster progress in pre-operative diffuse glioma assessment and follow-up, with the use of various multimodality approaches Cancers 2022, 14, 1432 3 of 23 becoming the new standard of care [6,9,19]. Hemodynamic glioma imaging is a growing topic where the abundance of technical imaging advancements and the ever-growing literature can be hard to decipher and contextualize [20]. For this reason, we present the current review as a two-part investigation where we aim to provide an updated overview of the different hemodynamic imaging modalities for diffuse glioma assessment. In the current manuscript (i.e., Part A of the review), the fundamental concepts of hemodynamic imaging are discussed in conjunction with their potential role in diagnosis and grading gliomas. Of note, hemodynamic imaging has historically been investigated extensively to differentiate between higher-grade and lower-grade glioma subtypes based on previous WHO classifications [21,22]. For the present review, the now-outdated high-grade glioma definition (i.e., including astrocytoma IDH-mut grade 3, as well as IDHwt and IDHmut glioblastoma) is used to discuss the previous findings. For this reason, we caution the reader to interpret this evidence while maintaining the most recent WHO CNS classification in mind [15]. Part B is a consecutive separate review where we discuss the potential use of hemodynamic imaging techniques to distinguish post-treatment effects, i.e., pseudo- progression and radiation necrosis from true tumor progression or recurrence, as well as diffuse glioma molecular characterization and prognostication, together with the latest advancements in new techniques, the integration of radiomics and the computational advantage granted by machine learning methods. 2. Overview of the Techniques and Parameters In normal physiology, cerebral vessel regulation and brain hemodynamics are highly sophisticated and fine-tuned by changes in blood gases, neuronal and tissue metabolism and blood pressure [23], and it is thus not unexpected that in diffuse gliomas, the patho- physiological and histological alterations determined by the growing tumorous tissue heavily affects these processes and results in abnormal hemodynamics. The determinants of such changes are several and only partly understood. Firstly, the highly heterogeneous growing tumor tissue displays high and deranged metabolic activity [24,25] at its initial stages, partially sustained by the subversion of microvascular anatomy, including extensive vascular remodeling and tumor angiogenesis controlled through the hypoxia-induced expression of vascular endothelial growth factor (VEGF). This results in irregular, disor- ganized and tortuous vessels with arteriovenous shunting and increased permeability of the defective BBB [26,27], accompanied by the spreading of tumor cells in the perivascular spaces—or vessel co-option [27–31]. At later stages, disruption of the blood–brain barrier, protein extravasation, hemorrhages and extensive necrosis histologically characterized by pseudopalisades occur [29,32]. The normally tight coupling between neuronal activity and hemodynamic changes in nearby vessels that are the target of functional MRIs for task-related presurgical mapping is also affected by the brain tumor, i.e., neurovascular uncoupling (NVU) resulting in a false-negative activation [33]. Furthermore, vasogenic and cytotoxic brain edema surrounding the lesion also impacts intracranial pressure, with consequences on the cerebral hemodynamic (e.g., decreased cerebral blood flow, impaired cerebrovascular reactivity, etc.) [34–36]. The ensemble of these alterations makes hemo- dynamic imaging particularly attractive in investigating pathophysiological alterations in gliomas. Hemodynamic brain imaging can be conceptually divided into the imaging of perfusion and that of cerebrovascular reactivity (CVR). The former is based on techniques studying the passage of blood through the vasculature and its relationship with the blood– brain barrier (BBB) and extravascular space. The latter focuses on analyzing the reactivity of the cerebral vessels and subsequent flow redistribution. 2.1. Perfusion Imaging Perfusion imaging follows the blood in the vascular system up to the tissue of interest using indicators (or tracers). These can be divided into two classes: intravascular, which remain in the vessels in physiological conditions, and freely diffusible, which can leave the intravascular space and diffuse throughout the entire tissue volume [37,38]. The mea- Cancers 2022, 14, 1432 4 of 23 surement of perfusion using intravascular tracers is based on the indicator dilution theory, first described using the Meier–Zierler model [39], whereas the use of freely diffusible ones relies on Fick’s diffusion law and was first described by the Kety–Schmidt model [40]. The perfusion imaging of brain tumors adopts several techniques, including dynamic susceptibility contrast (DSC)-MRI, dynamic contrast-enhanced (mit)-MRI, arterial spin labeling (ASL)-MRI [20] and perfusion computed tomography (PCT). Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can also be used to assess brain perfusion [41,42], but their use in brain tumor assessment has been seldom reported. Altogether, these techniques are based on different methodological approaches, present specific limitations and allow for the assessment of different perfusion parameters in the study of gliomas [18,41–50] (Table 1). These measures correlate to the pathophysiological underlying features of the studied tissue. For example, tumor cerebral blood volume (CBV) represents a good surrogate marker for microvascular density [51,52], a measure of angiogenesis that is an important prognostic indicator in malignant brain tu- mors [53–55], while the permeability parameters are specifically suited to assessing in vivo BBB leakiness present in the dysfunctional glioma vasculature [51] (Table 2). DSC-MRI, DCE-MRI and PCT are the available CE perfusion imaging techniques [37,56], and they all share the same principle regardless of the underlying analysis model: the labeling of circulating blood with a bolus injection of a contrast agent and the tracking of dy- namic imaging signal changes consequent to the first pass of labeled blood in the observed region of interest (bolus-tracking method) [37,39,56]. Of note, the absolute quantification of the derived perfusion parameters is possible only if the arterial input function (AIF) is accounted for in the data analysis, i.e., the deconvolution processing of the tissue bolus concentration time-curve [57,58]. AIF describes the time-dependent bolus concentration input curve to the tissue and it is required to account for the confounding effects resulting from bolus dispersion antecedent to its arrival in the region of interest (ROI) [57]. To determine AIF, several methods are known (refer to Calamante et al. for more details) [57]. As the measurement of the AIF is challenging in the perfusion imaging of brain tumors, these parameters are often directly derived from the tissue bolus concentration time-curve normalized to an area of “normal” tissue and therefore reported in a semi-quantitative form [58,59] using the contralateral white matter as the preferred reference [60] (Figure 2). Cancers 2022, 14, 1432 5 of 23 Table 1. Overview of hemodynamic imaging techniques. Abbreviations: AIF, arterial input function; ASL, arterial spin labeling; BBB, blood–brain barrier; BOLD, blood-oxygen-level-dependent; CA, contrast agent; CVR, cerebrovascular reactivity; DSC, dynamic susceptibility contrast; DCE, dynamic contrast-enhanced; GBCA, gadolinium-based contrast agent; IBCA, iodine-based contrast; MTT, mean transit time; PCT, perfusion computed tomography; PET, positron emission tomography; SPECT, single-photon emission computed tomography. DSC-MRI DCE-MRI ASL-MRI BOLD-CVR PCT PET SPECT 133Xe, 99mTc-HMPAO, Contrast agent GBCA GBCA - - IBCA 15-O2, H2150, C15O2 99mTc-ECD, 123i-IMP Radiation exposure - - - - +++ + - Meier-Zierler [39]; Tissue-homogeneity model, modified Tofts model, three-parameter Data model analysis Meier–Zierler [39] Kety–Schmidt [40] Fürst et al. [61] Meier–Zierler [39] Kety–Schmidt [40] Kety–Schmidt [40] models, two-parameter models, on-parameter models [47] CBV, CBF, MTT, Assessed parameters Ktrans, Ve, Vp, Kep CBV, CBF, MTT CBF CVR Ktrans, CBF, CBV, OEF CBF * (CBV, CBF, MTT) Ve, Vp, Kep Lack of radiation Lack of radiation exposure and use of exposure and use of iodinated CA; Linear relationship of iodinated CA; Combination with tissue signal intensity Accurate quantitative Combination with standard MRI with tissue contrast measurements Low costs, Non-invasive Non-invasive Strenghts standard MRI sequences for a more agent, allows Repeatibility due to Feasibility in No need of GBCA No need of GBCA sequences for a more comprehensive measurement of short half emergency settings comprehensive assessment of brain permeability of radiotracers assessment of tumors; Higher parameters brain tumors spatial resolution than DSC Cancers 2022, 14, 1432 6 of 23 Table 1. Cont. DSC-MRI DCE-MRI ASL-MRI BOLD-CVR PCT PET SPECT Indirect detection of Poor labeling the injected CA; efficiency, blood Choice of the most transport through Indirect detection of appropriate analysis vessels and tissue, the injected CA; models among the proton water Competing T1 different existing Possible light patient High costs, diffusion through the contrast effect due to ones; discomfort due to Reduced impossibility to use Poor Limitations BBB, low SNR, high CA leakage through High temporal carbon anatomic coverage in the emergency spatial resolution sensitivity from BBB **; resolution required; dioxide stimulus clinical settings patient motion and Challenging Dependency from magnetization measurement of AIF the CA extraction transfer effects. fraction Challenging Challenging measurement of AIF measurement of AIF Shiroishi et al. [62] Sourbron and Buxton et al. [63] and Buxton et al. [64] Suggested readings and Quarles et al. Jain et al. [51] Zhang et al. [67] Zhang et al. [67] Buckley [47] Calamante et al. [37] Fisher et al. [65,66] [45] * For definition of assessed parameters see Table 2. ** These leakage effects can be reduced by the commonly used preload leakage-correction strategy and by applying different model-based leakage-correction algorithms. (Qaurles et al., Bjorneurd et al., Boxerman et al., Donahue et al., Leu et al.). Cancers 2022, 14, 1432 7 of 23 Table 2. Perfusion parameters. Abbreviations: BBB, blood-brain barrier; CA, contrast agent; EES, extravascular extracellular space; g, grams; min, minute; mL, milliliter; ROI, region of interest; s, second. Parameter Interpretation Explanation Units Quantity of blood in a given amount of CBV Cerebral blood volume brain tissue. It is considered a surrogate mL of blood/100 g tissue of microvascular density. Rate of delivery of arterial blood to a mL of blood/100 g of CBF Cerebral blood flow capillary bed in tissue. tissue/min Average time that red blood cells spend within a determinate volume of MTT Mean transit time s capillary circulation. It is calculated as CBV/CBF. Measure of capillary permeability, is Volume transfer constant considered a good indicator of BBB between blood plasma and leakiness. It should be noted that in Ktrans 1/min extravascular situation of high permeability extracellular space (disrupted BBB) this parameter is more reflective of CBF. Quantification of cellularity and Extravascular extracellular Ve necrosis in extravascular mL/100 mL volume fraction extracellular space Blood plasma Quantification of the volume of Vp mL/100 mL fractional volume blood plasma Rate constant from Flux rate constant between the EES and Kep extravascular extracellular blood plasma. It can be derived 1/min space into blood plasma as Ktrans/Ve. Time at which contrast concentration TTP * Time to peak s reaches its maximum. Time from CA bolus injection to BAT * Bolus arrival time measured concentration changes in the s observed ROI Maximal CA concentration in the MPC * Maximum peak-concentration mL/100 mL observed ROI Measure of the width at half the Full-width at FMWH * maximum value of peaked s half-maximum concentration concentration–time curve Area under the peaked AUP * Area under the peak - concentration–time curve * Summary parameters. These are directly quantified by measuring summary properties of the tissue bolus concen- tration time-curve (“curvology”), and are therefore model-free metrics that do not possess specific physiological foundations and most likely represent a combination of different hemodynamic parameters (e.g., CBV, CBF, vessel permeability) and technical aspects (e.g., imaging technique, contrast dose, injection rate). Cancers 2022, 14, 1432 8 of 23 Figure 2. The derivation of perfusion parameters from the signal-response time curve is shown. The signal response time-curve is acquired during contrast bolus passage in the studied region-of-interest. From the signal response time-curve the changes of bolus concentration are estimated (tissue bolus concentration time-curve). Tissue bolus concentration time-curve is processed with mathematical models enabling a qualitative, semi-quantitative or quantitative assessment/measurement of perfu- sion parameters. Panel (A) Simplified signal response time curve acquired during DSC-MRI. Panel (B) Simplified tissue bolus concentration time-curve. Panel (C) Deconvoluted tissue bolus concentration time-curve to tissue response time-curve. Panel (D) Simplified signal response time-curve acquired during DCE-MRI. Panel (E) Schematic representation of permeability parameters derived from DCE- MRI. (Adapted from Zhang, J.; Liu, H.; Tong, H.; Wang, S.; Yang, Y.; Liu, G.; Zhang, W. Clinical Appli- cations of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges. Contrast Media Mol. Imaging 2017, 2017, 7064120. https://doi.org/10.1155/2017/7064120). Abbreviations: PH, peak height; PSR, percentage signal recovery; other abbreviations are defined in Table 2. In this respect, it is important to note that in the literature, the term “relative” (e.g., rCBV) is usually used to define semiquantitative parameters but the term “normalized” (e.g., nCBV) can be used interchangeably. Confusion can arise between the terms “relative” and “re- gional”, with the second referring to absolute measurements. In the present work, unless otherwise specified, we refer to the relative semiquantitative parameters and the r/n prefix has been omitted to enhance readability. 2.2. Cerebrovascular Reactivity Imaging Two mechanisms govern the cerebrovascular system by controlling the vascular smooth muscle cell tones to help regulate the regional CBF: autoregulation, which en- sures the maintenance of blood flow in response to changes in perfusion pressure [68], and metabolic neurovascular coupling, which increases the blood flow in active brain areas [69]. Cerebrovascular reactivity is a hemodynamic parameter describing the ability of brain vessels to obey these regulatory mechanisms. It is measured through the application of a vasoactive (vasodilatory or vasoconstrictive) stimulus and defined as the change in cerebral blood flow (CBF) per change in the given stimulus [70]. Among the different vasodilatory stimuli (such as hypotension, acetazolamide, carbon dioxide) that have been described, Cancers 2022, 14, 1432 9 of 23 carbon dioxide is the most attractive due to its many advantages [70]. Blood oxygen level- dependent (BOLD) functional MRI (fMRI) with a carbon dioxide respiratory challenge belongs to calibrated fMRI techniques [71] and is a reliable, accurate and reproducible imaging technique to assess cerebrovascular reactivity [66,70,72] (Figure 3). Figure 3. Cerebrosvascular reactivity. Panel (A) shows a schematic of encroached vasodilatory reserve and downstream of stenosis. Upon vasodilatory stimulus, all vessels will be stimulated to dilate, but flow increase in those with preserved vasodilatory reserve will reduce the flow distal to regional resistance. (Adapted by Sobczyk, O.; Battisti-Charbonney, A.; Fierstra, J.; Mandell, D.M.; Poublanc, J.; Crawley, A.P.; Mikulis, D.J.; Duffin, J.; Fisher, J.A. A conceptual model for CO2-induced redistribution of cerebral blood flow with experimental confirmation using BOLD MRI. NeuroImage 2014, 92, 56–68. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2014.01.051). Panel (B) shows a controlled standardized hypercapnic stimulus and its correlation to BOLD signal change. With the introduction of end-tidal targeting gas delivery systems, the possibility granted by precise independent control of the end-tidal pressure of carbon dioxide and oxy- gen [73] has increased the intra- and inter-subject reproducibility of the technique [65,73]. In recent years, the study of CVR has also proved a valuable adjunct for glioma characteri- zation [74–76]. 3. Clinical Applications of Hemodynamic Imaging in Cerebral Diffuse Gliomas—Part 1 After having reviewed the basic principles of hemodynamic imaging, we now present how their application has been investigated in the clinical work-up of patients with high- grade gliomas and discuss the relevant differences in the assessed parameters among the different tumor entities. 3.1. Differential Diagnosis versus Other Neoplastic and Non-Neoplastic Lesions The first magnetic resonance presentation of a brain lesion showing a heterogeneously enhancing mass surrounded by extensive peritumoral edema on a T2-weighted image is not univocally interpretable. Hemodynamic imaging has been investigated with the aim of differentiating between gliomas and other possible neoplastic entities such as brain metas- tases (BM) [77–100] and cerebral lymphoma [77,78,81,82,84,85,88,89,91,92,96–98,100–108], as well as other lesions like abscesses or demyelination [87,109–111]. 3.1.1. Metastases In an ideal case scenario, metastases should always be distinguished pre-operatively from high-grade gliomas to ensure a complete patient diagnostic assessment and to op- timize the treatment decision-making [112]. BM, differently from invasive high-grade gliomas, are encapsulated lesions. This renders the hemodynamic study of peritumoral tissue particularly suited for a possible differentiation of the two entities (vasogenic versus Cancers 2022, 14, 1432 10 of 23 infiltrated edema) [113,114]. DSC-MRI studies have provided the most consistent results on discriminating between high-grade gliomas and metastases [77,83,95–99,115,116]. In fact, a higher DSC-derived CBV can be found in high-grade glioma peritumoral edema [83,95,99]. Measuring the peritumoral CBV possesses the additional advantage of avoiding possible confounding due to hypervascular metastasis, e.g., melanoma, a diagnostic issue also reported in DCE studies [17,80,115]. In their meta-analysis including 900 patients from 18 studies, Suh et al. found that the use of DSC-derived peritumoral CBV provided the best results in terms of sensitivity (0.89) and specificity (0.88), with an AUC of 0.96 [115]. Because of the heterogeneity in the scan parameters and data processing, the cut-off values reported varied. Differently from CBV, PSR is thought to reflect a combination of many factors includ- ing CBF, the volume of extravascular space and contrast leak. This parameter has also been reported to be higher in high-grade gliomas compared to metastases [77,97,117], probably due to the different histological structures in metastatic tissue with respect to high-grade gliomas, with the former displaying endothelial gaps and an absence of BBB—determining the loss of signal recovery—and the latter only displaying a decreased capillary fenestration and partial BBB disruption. Other studies have found there to be no difference between the two entities [96,116]. Even if less investigated, DCE-MRI also showed potential for high-grade glioma versus metastasis differentiation [80,82,94,95], despite some reports failing to find relevant significant differences [95,118]. Although the same meta-analysis by Suh et al. included only two studies using DCE, the authors still highlight how this technique can constitute a better alternative given the drawback of DSC susceptibility to surgery-dependent artifacts. DCE-derived iAUC and Ktrans were found to be higher in the peritumoral white matter of glioblastomas compared to metastases [94]. Previously, Jung et al. reported that pharmacokinetic parameters, such as lesional Ktrans and Vp, cannot differentiate between the two tumor entities, while hypovascular metastases can be differentiated by the AUC signal-intensity curve and wash-out log slope from glioblastoma and melanoma (hypervascular) metastases [80]. In a small series, Bauer et al. found that, despite the Ktrans being higher in non-enhancing T2 hyperintensities of glioblastoma, this did not reach statistical significance [95]. Contrary to the other observations, Zhao et al. in 2015 reported Ve and iAUC to be higher in metastases than in high-grade gliomas. However, this study only included five metastases patients—all from the hypervascular primaries [82]. These findings stress how, in addition to the variability of acquisition and processing methodology, the histology of the primary tumor has a role in perfusion assessment and thus needs to be carefully evaluated in future studies. In line with the findings from DSC, Lin et al. found that high-grade gliomas display higher absolute and relative ASL-derived CBF than metastases in peritumoral edema, contrarily to the absence of differences in enhancing lesions [79]. Other series instead found CBF to also be higher intratumorally [93,108,119]. Despite fewer studies, ASL is also included in the meta-analysis by Suh et al. The authors concluded that this technique also exhibits good potential for differentiation [120]. In this respect, in 2019, Fu et al. conducted a meta- analysis to assess ASL performance. They included five studies with a total of 346 patients and concluded that ASL has high sensitivity, specificity and AUC for differentiating brain metastases from gliomas [121]. PCT studies have also found there to be decreased CBV and MTT in metastases compared to gliomas [78], while a recent series by Onishi et al. reported that PCT-derived peritumoral MTT (higher in metastases) and CBF achieved the best performance for differentiating high-grade gliomas from other intracranial tumors, with CBV also showing statistical differences [100]. Despite some encouraging findings, the conflicting evidence remains to be evaluated and it should be noted that the most recent EANO guidelines on brain metastases state that perfusion MRI does not accurately discriminate BM from malignant tumors of glial origin [112]. 3.1.2. Primary Central Nervous System Lymphomas The distinction between gliomas and cerebral lymphomas is even more sensible, as the latter should be treated with chemoradiotherapy with the role of resection remaining Cancers 2022, 14, 1432 11 of 23 controversial [122,123]. DSC-MRI studies found that, with respect to high-grade gliomas, cerebral lymphomas show lower CBV [77,91,92,96,103,105,106,124]. This is in line with absent angiogenesis in these tumors—lower CBF [124], higher PSR [77,96,97,124] (charac- teristically displaying a phenomenon of overshooting, not fully understood but possibly determined by dominant T1 effects of extravasated contrast agent accumulating in the interstitial space [77]), lower PH [96] and lower MTT [124]. A meta-analysis by Xu et al. found that DSC-derived measures are optimal for distinguishing high-grade gliomas from cerebral lymphomas (AUC: 0.98; sensitivity 0.96) [125]. DCE studies found increased Krans [102,106,118], increased Kep [107], increased Ve [102,118,126], lower Vp [127] and increased iAUC [82,128] versus high-grade gliomas. Conflicting evidence was reported by Kickingereder et al., who did not find increased Ve [107], and Lin et al., who failed to report a significant difference in Ktrans [127]. Taken together, the results regarding the permeability parameters show an increased leakiness through BBB in cerebral lym- phomas that have been associated histologically with tumor invasion of the basement membrane, as well as the absence of/thinner endothelial cells as opposed to high-grade gliomas [102,107]. iAUC’s underlying pathophysiological correlates are still debated, but as a model-free metric (see Table 2), it likely still reflects a combination of different perfusion variables [128]. Due to the lower amount of evidence, the meta-analysis by Suh et al. concluded that robust conclusions on DCE could not be drawn due to the lack of enough evidence [120]. Okuchi et al. in 2019 published another meta-analysis including five DCE studies (224 patients) and reported a pooled sensitivity and specificity of 0.78 and 0.81, with an AUC of 0.86 [129]. ASL studies found a decreased CBF in cerebral lymphomas versus high-grade gliomas likely resulting from absent angiogenesis in these lesions [102,108,130]. Suh et al. also ran a meta-analysis to assess the diagnostic performance of perfusion MRI in differentiating glioma from cerebral lymphomas. They found that ASL studies, the same as DSC, showed a high diagnostic performance with a sensitivity of 0.93 and a specificity of 0.91 [120]. Another meta-analysis by Xu et al. found that ASL had the best specificity, i.e., 0.90, for this purpose when compared with DSC and DCE. The variability of the re- ported threshold calls for further standardization, which is currently lacking [125]. PCT studies found decreased CBF [100,104] and CBV [78,85,100,104,104], lower MTT [78] and higher Ktrans [104,131] (not found by Schramm et al. [85]). For cerebral lymphomas, de- spite the EANO guidelines recognizing the role of perfusion MRI in differentiating between them (DSC-MRI in particular), histopathological confirmation is required for diagnosis as no imaging modality possesses a sufficient specificity [122]. 3.1.3. Non-Neoplastic Lesions: Abscesses and Autoimmune Lesions Furthermore, cerebral abscesses can also sometimes be difficult to distinguish from high-grade gliomas as these also present as a CE rim surrounding a central necrotic core, with diffusion-weighted imaging being particularly useful for this purpose [132,133]. Per- fusion imaging can provide an additional tool to better differentiate between these two lesions, despite only a handful of small series and case reports having addressed this topic in the published literature. In particular, differences in the contrast-enhancing rim have attracted interest. Toh et al. reported the CBV in the enhancing rim of abscesses to be significantly lower than those in GBM or metastases [109], in agreement with previous studies [87,88,132,134,135]. Hakyemez et al. also reported the CBF to be increased in high-grade gliomas, with respect to infectious lesions where Ktrans and Ve are reduced [88]. Regarding PCT, a recent study by Karegowda failed to find any significant difference between high-grade gliomas and abscesses [78]. This is different from a previous study by Chawalaprit et al. [136]. Similar to infectious lesions, tumefactive demyelinating lesions (TDLs) have also been investigated in small series with conflicting results. In fact, despite the highly angiogenic tumor tissue having different histopathological alterations, some of these lesions can mimic high-grade gliomas in standard imaging leading to unnecessary treatment. DSC-derived CBV failed to differentiate TDLs from WHO grade 2 and grade 3 gliomas in a retrospective series by Blasel et al. [137], whose low sensitivity was also con- Cancers 2022, 14, 1432 12 of 23 firmed by Hiremath et al. [138]. Other series found lower CBV [139,140] and CBF [140] in the former. A study by Jain et al. assessing PCT also reported CBV, CBF and PS to be lower in high-grade gliomas compared to TDLs [110]. 3.2. Glioma Grading/Subtype The standard imaging of gliomas can lead to an educated guess on the expected tumor grade, but as some low-grade gliomas can present with contrast-enhancement and a number of atypical high-grade gliomas do not readily exhibit BBB disruption, hemody- namic imaging can further support the differentiation of these two entities. Low-grade gliomas are mostly characterized by native vessel co-option while the hypoxic angiogenic microenvironment of high-grade gliomas presents with an increased number of leaky vessels [141]. These features are reflected by an increased microvascular proliferation in more aggressive tumors (leading to increased CBV and CBF) and an increase in the permeability parameters describing BBB leakiness. Numerous publications have assessed the performance of hemodynamic imaging in glioma grading, in particular when distin- guishing high-grade from low-grade gliomas [8,77,78,81,82,84,86,104,105,111,142–188] but also when distinguishing grade 3 from grade 4 [148,153,155,162,169,173,178,182,189–191]. It is important to note once more that all of these studies investigated imaging performance related to the previous WHO classification [21,22]. The changes implemented in the latest classification [15] deserve there to be a contextualization of the past findings of hemody- namic imaging in the framework of the newly available evidence. In general, while the differentiation of high-grade versus low-grade gliomas has been more strongly established, the extent to which these techniques can distinguish between grade 3 and grade 4 gliomas has reported more conflicting results. This is where the authors inconstantly report signif- icant differences in some parameters or the failure of perfusion imaging to differentiate them [153,162,173,178,192]. Most notably, DSC-CBV has been consistently found to be higher in high-grade gliomas [8,77,88,98,142,146,148,151,158,160,166,170,174,179–182,187,188,191,193–196] with occasional reports finding no difference [150]. These associations have been sug- gested to be useful when seeking to identify possible biopsy sampling errors, e.g., cases where the histopathology and CBV are discordant [197,198]. Of note, a recent study by Gaudino et al. reported that CBV has a different optimal threshold for tumor grading in supratentorial versus infratentorial tumors [98]. The overall consistency of the reported findings was confirmed by recent meta-analyses [199,200]. A recent study pooled the quantitative CBV values through a random-effect meta-analysis confirming that these were higher in high-grade than low-grade gliomas. In particular, DSC-CBV had a pooled sensitivity of 0.92 and a pooled specificity of 0.81 with a pooled area of 0.91 under the curve (AUC) [199]. In another meta-analysis, it was investigated whether DSC can differ- entiate between grade 2 and grade 3 gliomas. It was accordingly reported that the latter had a higher CBV [200]. Nevertheless, a Cochrane Review by Abrigo et al. published in 2018 used the DSC-CBV threshold of <1.75 to differentiate low-grade gliomas from non- enhancing high-grade gliomas and found that the summary of the sensitivity/specificity estimates was 0.83/0.48, with specificity rising to 0.67 when using only five good-quality studies in the sensitivity analyses. For this reason, the authors concluded that DSC cannot yet reliably be used for this purpose due to possible detrimental repercussions on the treatment strategy approach [201]. DSC-CBF has also been reported to be higher in high- grade gliomas [8,88,160,170,171,177,179,187,193,194,202] with occasional studies reporting no significant difference in this parameter [175]. Even if less commonly investigated, other parameters that can be derived from DSC-MRI are correlated to glioma grade. For ex- ample, MTT has been reported to be higher in high-grade gliomas [8] but surprisingly, Alkenhal et al. found it to be lower in non-enhancing grade 3 vs. grade 2 [150], while some reports found there to be no difference between high-grade and low-grade gliomas [179]. PH and TTP (in peritumoral edema) are significantly lower and higher respectively, in high- grade as compared with low-grade gliomas [8,182]. PSR has been reported to be decreased in high-grade gliomas [170,174], with some reports failing to find a difference [77]. DCE- Cancers 2022, 14, 1432 13 of 23 MRI studies consistently reported increased Ktrans [82,152,166,173,183,203–207], which constitutes the most commonly investigated parameter. Despite this indicator in healthy conditions primarily reflecting BBB permeability, it should be treated with caution in cases of disrupted BBB—such as in high-grade gliomas—where it is more reflective of and limited by blood flow (see Table 2) [208]. Other DCE-derived metrics that are in- creased in high-grade gliomas include Ve [82,182,203–206], Vp [166,173,209] and AUC [82]. Despite these congruent findings, other authors, most likely because of methodological differences, insufficient sample sizes or different statistical analyses, failed to find signif- icant differences in Ktrans [210], Ve [203] and Kep [203] between high- and low-grade lesions. Okuchi et al. meta-analyzed 14 DCE studies and found that the pooled sensitivity, specificity and AUC for differentiating high-grade from low-grade gliomas were 0.93, 0.90 and 0.96 [129]. ASL-derived CBF has also been consistently reported to be higher in high-grade gliomas [145,147,153,154,156,160,163,164,167,168,171,172,177,211] with spo- radic reports failing to show a difference [183]. Some studies have also compared the CBF derived from ASL to DSC-CBF and DCE-CBF. It is relevant to note that one such study by Roy et al. reported a poor correlation between DCE and ASL for CBF calculation [183], while Hashido et al. found in their study that ASL underestimates CBF with respect to DSC [147]. Several meta-analyses conducted to assess the role of ASL in glioma grading concluded that ASL possesses a good discriminative ability for glioma grading [199,212–214]. Kong et al. performed a meta-analysis using a random effect model and included 9 studies for a total of 205 patients, reporting that both the relative and absolute TBF values were significantly increased in the high-grade gliomas with respect to the low-grade gliomas [212]. One year later, Delgado et al. conducted a systematic review and analyzed 15 studies including 505 patients and concluded that both pseudocontinuous and pulsed ASL-calculated CBF possess excellent diagnostic performance in terms of glioma grading (AUC 0.90 and 0.88, respectively) [213]. A recent study pooled quantitative CBF data into a random-effect meta-analysis confirming that they were more high-grade gliomas with a pooled sensitivity of 0.88 and a pooled specificity of 0.91. In the same investigation, the calculated pooled AUC was 0.95 [199]. Another systematic review by Alsaedi et al. found that absolute CBF can differentiate low-grade from high-grade gliomas but it loses its discriminative ability when only grade 2 versus grade 3 or grade 3 versus grade 4 gliomas are com- pared [214]. The authors warn that because of the different ASL approaches (pulsed-ASL, pseudo-continuous ASL and continuous ASL) and acquisition parameters, the quantitative measurements reported in the single studies are to be interpreted with caution. Moreover, other shortcomings of the different methodologies applied are critically discussed, such as poor labelling efficacy and unstandardized ROI choice. The PCT series has also reported that using this technique can be used to differentiate high-grade from low-grade gliomas with CBV, as CBF was higher in the former [78,215] while no differences in MTT [78,215] and TTP were found [78]. In addition to increased CBV, PCT also reported increased PS in high-grade gliomas [216]. 4. Limitations To overcome the limitations intrinsic to the various imaging modalities (e.g., CBV measurement by DSC is influenced by GRE vs. SE pulse sequence, contrast agent dosing, image acquisition parameters, post-processing techniques and GBCA leakage correction), efforts were made to achieve protocol standardization aimed at solving the variability of the reported methodologies and their resulting reported cut-offs [217–219]. Similar consensus papers aimed at solving the issues associated with ASL acquisition [220] and, more importantly, the processing pipeline are also underway [221]. 5. Conclusions Hemodynamic imaging-derived measurements are well suited to characterizing ab- normal vasculature perfusion, BBB defects and providing complementary information with respect to standard neuroimaging to assist in diffuse cerebral glioma patient diagnostic Cancers 2022, 14, 1432 14 of 23 workup. Several studies have assessed the potential of hemodynamic imaging for brain tumor differential diagnosis and tumor grading. They reported high sensitivity and speci- ficity, especially of DSC but also of DCE and ASL-MRI for the differentiation of high-grade gliomas from brain metastases, cerebral lymphomas and non-neoplastic lesions, as well as for differentiating high-grade gliomas from low-grade gliomas. As recent efforts aim to tackle the standardization issues intrinsic to the imaging modalities investigated (from hardware and acquisition parameters to model analysis and post-processing), a number of limitations have prevented the univocal interpretation of the previous findings, largely limiting a robust and widespread clinical translation. Author Contributions: Conceptualization, L.G., V.S. and J.F.; methodology, L.G., V.S., J.B. and J.F.; formal analysis, L.G. and V.S.; investigation, L.G. and V.S.; resources, L.G., V.S. and J.F.; data curation, L.G. and V.S.; writing—original draft preparation, L.G., V.S., J.B. and J.F.; writing—review and editing, L.G., V.S., J.B., C.H.B.v.N., M.S., M.B., A.B., M.W., Z.K., L.R. and J.F.; visualization, V.S. and J.B.; supervision, J.F.; funding acquisition, J.F. All authors have read and agreed to the published version of the manuscript. Funding: This research was funded by the Swiss Cancer League, KFS-3975-08-2016-R. Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. References 1. Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology 2020, 22, iv1–iv96. [CrossRef] [PubMed] 2. Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nat. Rev. Clin. On- col. 2020, 18, 170–186. [CrossRef] [PubMed] 3. Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [CrossRef] [PubMed] 4. Jacobs, D.I.; Kumthekar, P.; Stell, B.V.; Grimm, S.A.; Rademaker, A.W.; Rice, L.; Chandler, J.P.; Muro, K.; Marymont, M.; Helenowski, I.B.; et al. Concordance of Patient and Caregiver Reports in Evaluating Quality of Life in Patients with Malignant Gliomas and an Assessment of Caregiver Burden. Neuro-Oncol. Pract. 2014, 1, 47–54. [CrossRef] 5. Gately, L.; McLachlan, S.; Dowling, A.; Philip, J. Life beyond a Diagnosis of Glioblastoma: A Systematic Review of the Literature. J. Cancer Surviv. 2017, 11, 447–452. [CrossRef] 6. Lundy, P.; Domino, J.; Ryken, T.; Fouke, S.; McCracken, D.J.; Ormond, D.R.; Olson, J.J. The Role of Imaging for the Management of Newly Diagnosed Glioblastoma in Adults: A Systematic Review and Evidence-Based Clinical Practice Guideline Update. J. Neurooncol. 2020, 150, 95–120. [CrossRef] 7. Heynold, E.; Zimmermann, M.; Hore, N.; Buchfelder, M.; Doerfler, A.; Stadlbauer, A.; Kremenevski, N. Physiological MRI Biomarkers in the Differentiation Between Glioblastomas and Solitary Brain Metastases. Mol. Imaging Biol. 2021, 23, 787–795. [CrossRef] 8. Zhang, L.; Yang, L.; Wen, L.; Lv, S.; Hu, J.; Li, Q.; Xu, J.; Xu, R.; Zhang, D. Noninvasively Evaluating the Grading of Glioma by Multiparametric Magnetic Resonance Imaging. Acad. Radiol. 2020, 28, e137–e146. [CrossRef] 9. Verburg, N.; de Witt Hamer, P.C. State-of-the-Art Imaging for Glioma Surgery. Neurosurg. Rev. 2021, 44, 1331–1343. [CrossRef] 10. Delgado-López, P.D.; Riñones-Mena, E.; Corrales-García, E.M. Treatment-Related Changes in Glioblastoma: A Review on the Controversies in Response Assessment Criteria and the Concepts of True Progression, Pseudoprogression, Pseudoresponse and Radionecrosis. Clin. Transl. Oncol. 2018, 20, 939–953. [CrossRef] 11. Strauss, S.B.; Meng, A.; Ebani, E.J.; Chiang, G.C. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudore- sponse, Radiation Necrosis. Radiol. Clin. N. Am. 2019, 57, 1199–1216. [CrossRef] [PubMed] 12. Zikou, A.; Sioka, C.; Alexiou, G.A.; Fotopoulos, A.; Voulgaris, S.; Argyropoulou, M.I. Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated Gliomas. Contrast Media Mol. Imaging 2018, 2018, e6828396. [CrossRef] [PubMed] 13. Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of Brain Tumors. J. Magn. Reson. Imaging 2018, 48, 571–589. [CrossRef] [PubMed] Cancers 2022, 14, 1432 15 of 23 14. Fuster-Garcia, E.; Juan-Albarracín, J.; García-Ferrando, G.A.; Martí-Bonmatí, L.; Aparici-Robles, F.; García-Gómez, J.M. Im- proving the Estimation of Prognosis for Glioblastoma Patients by MR Based Hemodynamic Tissue Signatures. NMR Biomed. 2018, 31, e4006. [CrossRef] [PubMed] 15. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [CrossRef] 16. Yeung, T.P.C.; Bauman, G.; Yartsev, S.; Fainardi, E.; Macdonald, D.; Lee, T.-Y. Dynamic Perfusion CT in Brain Tumors. Eur. J. Radiol. 2015, 84, 2386–2392. [CrossRef] 17. Zhang, J.; Liu, H.; Tong, H.; Wang, S.; Yang, Y.; Liu, G.; Zhang, W. Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges. Contrast Media Mol. Imaging 2017, 2017, e7064120. [CrossRef] 18. Telischak, N.A.; Detre, J.A.; Zaharchuk, G. Arterial Spin Labeling MRI: Clinical Applications in the Brain. J. Magn. Reson. Imaging 2015, 41, 1165–1180. [CrossRef] 19. Brandão, L.A.; Shiroishi, M.S.; Law, M. Brain Tumors: A Multimodality Approach with Diffusion-Weighted Imaging, Diffusion Tensor Imaging, Magnetic Resonance Spectroscopy, Dynamic Susceptibility Contrast and Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Magn. Reson. Imaging Clin. N. Am. 2013, 21, 199–239. [CrossRef] 20. Essig, M.; Shiroishi, M.S.; Nguyen, T.B.; Saake, M.; Provenzale, J.M.; Enterline, D.; Anzalone, N.; Dörfler, A.; Rovira, À.; Wintermark, M.; et al. Perfusion MRI: The Five Most Frequently Asked Technical Questions. Am. J. Roentgenol. 2013, 200, 24–34. [CrossRef] 21. Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathol. 2007, 114, 97–109. [CrossRef] [PubMed] 22. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [CrossRef] [PubMed] 23. Willie, C.K.; Tzeng, Y.-C.; Fisher, J.A.; Ainslie, P.N. Integrative Regulation of Human Brain Blood Flow. J. Physiol. 2014, 592, 841–859. [CrossRef] [PubMed] 24. Agnihotri, S.; Zadeh, G. Metabolic Reprogramming in Glioblastoma: The Influence of Cancer Metabolism on Epigenetics and Unanswered Questions. Neuro-Oncology 2016, 18, 160–172. [CrossRef] [PubMed] 25. Darbin, O.; Lonjon, M.; Quentien, M.H.; Michiels, J.F.; Grellier, P.; Negrin, J.; Rostain, J.C.; Risso, J.J. In Vivo Study of Tumor Metabolism: An Application of New Multi-Probe Microdialysis System in the Striatum of Freely Moving Rats Grafted with C6 Cells. Brain Res. 2000, 881, 121–127. [CrossRef] 26. Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The Blood–Brain Barrier and Blood–Tumour Barrier in Brain Tumours and Metastases. Nat. Rev. Cancer 2020, 20, 26–41. [CrossRef] 27. Jain, R.K.; di Tomaso, E.; Duda, D.G.; Loeffler, J.S.; Sorensen, A.G.; Batchelor, T.T. Angiogenesis in Brain Tumours. Nat. Rev. Neurosci. 2007, 8, 610–622. [CrossRef] 28. Watkins, S.; Robel, S.; Kimbrough, I.F.; Robert, S.M.; Ellis-Davies, G.; Sontheimer, H. Disruption of Astrocyte–Vascular Coupling and the Blood–Brain Barrier by Invading Glioma Cells. Nat. Commun. 2014, 5, 4196. [CrossRef] 29. D’Alessandris, Q.G.; Pacioni, S.; Stumpo, V.; Buccarelli, M.; Lauretti, L.; Giordano, M.; Di Bonaventura, R.; Martini, M.; Larocca, L.M.; Giannetti, S.; et al. Dilation of Brain Veins and Perivascular Infiltration by Glioblastoma Cells in an In Vivo Assay of Early Tumor Angiogenesis. Available online: https://www.hindawi.com/journals/bmri/2021/8891045/ (accessed on 5 May 2021). 30. Kane, J.R. The Role of Brain Vasculature in Glioblastoma. Mol. Neurobiol. 2019, 56, 6645–6653. [CrossRef] 31. Seano, G.; Jain, R.K. Vessel Co-Option in Glioblastoma: Emerging Insights and Opportunities. Angiogenesis 2020, 23, 9–16. [CrossRef] 32. Lee, J.; Lund-Smith, C.; Borboa, A.; Gonzalez, A.M.; Baird, A.; Eliceiri, B.P. Glioma-Induced Remodeling of the Neurovascular Unit. Brain Res. 2009, 1288, 125–134. [CrossRef] [PubMed] 33. Agarwal, S.; Sair, H.I.; Pillai, J.J. The Problem of Neurovascular Uncoupling. Neuroimaging Clin. N. Am. 2021, 31, 53–67. [CrossRef] [PubMed] 34. Sorribes, I.C.; Moore, M.N.J.; Byrne, H.M.; Jain, H.V. A Biomechanical Model of Tumor-Induced Intracranial Pressure and Edema in Brain Tissue. Biophys. J. 2019, 116, 1560–1574. [CrossRef] [PubMed] 35. Kim, M.O.; Adji, A.; O’Rourke, M.F.; Avolio, A.P.; Smielewski, P.; Pickard, J.D.; Czosnyka, M. Principles of Cerebral Hemodynam- ics When Intracranial Pressure Is Raised: Lessons from the Peripheral Circulation. J. Hypertens. 2015, 33, 1233–1241. [CrossRef] [PubMed] 36. Aubert, A.; Costalat, R.; Duffau, H.; Benali, H. Modeling of Pathophysiological Coupling between Brain Electrical Activation, Energy Metabolism and Hemodynamics: Insights for the Interpretation of Intracerebral Tumor Imaging. Acta Biotheor. 2002, 50, 281–295. [CrossRef] 37. Calamante, F.; Thomas, D.L.; Pell, G.S.; Wiersma, J.; Turner, R. Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques. J. Cereb. Blood Flow Metab. 1999, 19, 701–735. [CrossRef] 38. Golay, X.; Petersen, E.T. Arterial Spin Labeling: Benefits and Pitfalls of High Magnetic Field. Neuroimaging Clin. N. Am. 2006, 16, 259–268. [CrossRef] Cancers 2022, 14, 1432 16 of 23 39. Meier, P.; Zierler, K.L. On the Theory of the Indicator-Dilution Method for Measurement of Blood Flow and Volume. J. Appl. Physiol. 1954, 6, 731–744. [CrossRef] 40. Kety, S.S.; Schmidt, C.F. The Nitrous oxide method for the quantitative determination of Cerebral blood flow in man: Theory, procedure and normal values. J. Clin. Investig. 1948, 27, 476–483. [CrossRef] 41. Wintermark, M.; Sesay, M.; Barbier, E.; Borbély, K.; Dillon, W.P.; Eastwood, J.D.; Glenn, T.C.; Grandin, C.B.; Pedraza, S.; Soustiel, J.F.; et al. Comparative Overview of Brain Perfusion Imaging Techniques. J. Neuroradiol. 2005, 32, 294–314. [CrossRef] 42. Hoeffner, E.G. Cerebral Perfusion Imaging. J. Neuroophthalmol. 2005, 25, 313–320. [CrossRef] [PubMed] 43. Cianfoni, A.; Colosimo, C.; Basile, M.; Wintermark, M.; Bonomo, L. Brain Perfusion CT: Principles, Technique and Clinical Applications. Radiol. Med. 2007, 112, 1225–1243. [CrossRef] [PubMed] 44. Miles, K.A. Perfusion Imaging with Computed Tomography: Brain and Beyond. Eur. Radiol. 2006, 16 (Suppl. S7), M37–M43. [CrossRef] [PubMed] 45. Quarles, C.C.; Bell, L.C.; Stokes, A.M. Imaging Vascular and Hemodynamic Features of the Brain Using Dynamic Susceptibility Contrast and Dynamic Contrast Enhanced MRI. Neuroimage 2019, 187, 32–55. [CrossRef] 46. Aksoy, F.G.; Lev, M.H. Dynamic Contrast-Enhanced Brain Perfusion Imaging: Technique and Clinical Applications. Semin. Ultrasound CT MR 2000, 21, 462–477. [CrossRef] 47. Sourbron, S.P.; Buckley, D.L. Classic Models for Dynamic Contrast-Enhanced MRI. NMR Biomed. 2013, 26, 1004–1027. [CrossRef] 48. Havsteen, I.; Damm Nybing, J.; Christensen, H.; Christensen, A.F. Arterial Spin Labeling: A Technical Overview. Acta Radiol. 2018, 59, 1232–1238. [CrossRef] 49. Grade, M.; Hernandez Tamames, J.A.; Pizzini, F.B.; Achten, E.; Golay, X.; Smits, M. A Neuroradiologist’s Guide to Arterial Spin Labeling MRI in Clinical Practice. Neuroradiology 2015, 57, 1181–1202. [CrossRef] 50. Lüdemann, L.; Warmuth, C.; Plotkin, M.; Förschler, A.; Gutberlet, M.; Wust, P.; Amthauer, H. Brain Tumor Perfusion: Comparison of Dynamic Contrast Enhanced Magnetic Resonance Imaging Using T1, T2, and T2* Contrast, Pulsed Arterial Spin Labeling, and H2(15)O Positron Emission Tomography. Eur. J. Radiol. 2009, 70, 465–474. [CrossRef] 51. Jain, R. Perfusion CT Imaging of Brain Tumors: An Overview. AJNR Am. J. Neuroradiol. 2011, 32, 1570–1577. [CrossRef] 52. Assimakopoulou, M.; Sotiropoulou-Bonikou, G.; Maraziotis, T.; Papadakis, N.; Varakis, I. Microvessel Density in Brain Tumors. Anticancer Res. 1997, 17, 4747–4753. [PubMed] 53. Leon, S.P.; Folkerth, R.D.; Black, P.M. Microvessel Density is a Prognostic Indicator for Patients with Astroglial Brain Tumors. Cancer 1996, 77, 362–372. [CrossRef] 54. Li, V.W.; Folkerth, R.D.; Watanabe, H.; Yu, C.; Rupnick, M.; Barnes, P.; Scott, R.M.; Black, P.M.; Sallan, S.E.; Folkman, J. Microvessel Count and Cerebrospinal Fluid Basic Fibroblast Growth Factor in Children with Brain Tumours. Lancet 1994, 344, 82–86. [CrossRef] 55. Fan, C.; Zhang, J.; Liu, Z.; He, M.; Kang, T.; Du, T.; Song, Y.; Fan, Y.; Xu, J. Prognostic Role of Microvessel Density in Patients with Glioma. Medicine 2019, 98, e14695. [CrossRef] [PubMed] 56. Østergaard, L. Principles of Cerebral Perfusion Imaging by Bolus Tracking. J. Magn. Reson. Imaging 2005, 22, 710–717. [CrossRef] 57. Calamante, F. Arterial Input Function in Perfusion MRI: A Comprehensive Review. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 74, 1–32. [CrossRef] [PubMed] 58. Perthen, J.E.; Calamante, F.; Gadian, D.G.; Connelly, A. Is Quantification of Bolus Tracking MRI Reliable without Deconvolution? Magn. Reson. Med. 2002, 47, 61–67. [CrossRef] 59. Jackson, A.; O’Connor, J.; Thompson, G.; Mills, S. Magnetic Resonance Perfusion Imaging in Neuro-Oncology. Cancer Imaging 2008, 8, 186–199. [CrossRef] 60. Wetzel, S.G.; Cha, S.; Johnson, G.; Lee, P.; Law, M.; Kasow, D.L.; Pierce, S.D.; Xue, X. Relative Cerebral Blood Volume Measurements in Intracranial Mass Lesions: Interobserver and Intraobserver Reproducibility Study. Radiology 2002, 224, 797–803. [CrossRef] 61. Fürst, H.; Hartl, W.H.; Janssen, I. Patterns of Cerebrovascular Reactivity in Patients with Unilateral Asymptomatic Carotid Artery Stenosis. Stroke 1994, 25, 1193–1200. [CrossRef] 62. Shiroishi, M.S.; Castellazzi, G.; Boxerman, J.L.; D’Amore, F.; Essig, M.; Nguyen, T.B.; Provenzale, J.M.; Enterline, D.S.; Anzalone, N.; Dörfler, A.; et al. Principles of T2 *-Weighted Dynamic Susceptibility Contrast MRI Technique in Brain Tumor Imaging. J. Magn. Reson. Imaging 2015, 41, 296–313. [CrossRef] [PubMed] 63. Buxton, R.B.; Frank, L.R.; Wong, E.C.; Siewert, B.; Warach, S.; Edelman, R.R. A General Kinetic Model for Quantitative Perfusion Imaging with Arterial Spin Labeling. Magn. Reson. Med. 1998, 40, 383–396. [CrossRef] 64. Buxton, R.B. The Physics of Functional Magnetic Resonance Imaging (FMRI). Rep. Prog. Phys. 2013, 76, 096601. [CrossRef] [PubMed] 65. Fisher, J.A.; Venkatraghavan, L.; Mikulis, D.J. Magnetic Resonance Imaging–Based Cerebrovascular Reactivity and Hemodynamic Reserve. Stroke 2018, 49, 2011–2018. [CrossRef] [PubMed] 66. Fisher, J.A.; Mikulis, D.J. Cerebrovascular Reactivity: Purpose, Optimizing Methods, and Limitations to Interpretation—A Personal 20-Year Odyssey of (Re)Searching. Front. Physiol. 2021, 12, 629651. [CrossRef] [PubMed] 67. Zhang, J.; Traylor, K.S.; Mountz, J.M. PET and SPECT Imaging of Brain Tumors. Semin. Ultrasound CT MRI 2020, 41, 530–540. [CrossRef] 68. Tzeng, Y.-C.; Ainslie, P.N. Blood Pressure Regulation IX: Cerebral Autoregulation under Blood Pressure Challenges. Eur. J. Appl. Physiol. 2014, 114, 545–559. [CrossRef] Cancers 2022, 14, 1432 17 of 23 69. Attwell, D.; Buchan, A.M.; Charpak, S.; Lauritzen, M.; MacVicar, B.A.; Newman, E.A. Glial and Neuronal Control of Brain Blood Flow. Nature 2010, 468, 232–243. [CrossRef] 70. Fierstra, J.; Sobczyk, O.; Battisti-Charbonney, A.; Mandell, D.M.; Poublanc, J.; Crawley, A.P.; Mikulis, D.J.; Duffin, J.; Fisher, J.A. Measuring Cerebrovascular Reactivity: What Stimulus to Use? J. Physiol. 2013, 591, 5809–5821. [CrossRef] 71. Chen, J.J.; Gauthier, C.J. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated FMRI and Resting-State FMRI. Front. Physiol. 2021, 12, 657362. [CrossRef] 72. Sobczyk, O.; Fierstra, J.; Venkatraghavan, L.; Poublanc, J.; Duffin, J.; Fisher, J.A.; Mikulis, D.J. Measuring Cerebrovascular Reactivity: Sixteen Avoidable Pitfalls. Front. Physiol. 2021. [CrossRef] [PubMed] 73. Slessarev, M.; Han, J.; Mardimae, A.; Prisman, E.; Preiss, D.; Volgyesi, G.; Ansel, C.; Duffin, J.; Fisher, J.A. Prospective Targeting and Control of End-Tidal CO2 and O2 Concentrations. J. Physiol. 2007, 581, 1207–1219. [CrossRef] [PubMed] 74. Muscas, G.; van Niftrik, C.H.B.; Sebök, M.; Seystahl, K.; Piccirelli, M.; Stippich, C.; Weller, M.; Regli, L.; Fierstra, J. Hemodynamic Investigation of Peritumoral Impaired Blood Oxygenation-Level Dependent Cerebrovascular Reactivity in Patients with Diffuse Glioma. Magn. Reson. Imaging 2020, 70, 50–56. [CrossRef] [PubMed] 75. Sebök, M.; van Niftrik, C.H.B.; Muscas, G.; Pangalu, A.; Seystahl, K.; Weller, M.; Regli, L.; Fierstra, J. Hypermetabolism and Impaired Cerebrovascular Reactivity beyond the Standard MRI-Identified Tumor Border Indicate Diffuse Glioma Extended Tissue Infiltration. Neuro-Oncol. Adv. 2021, 3, vdab048. [CrossRef] 76. Stumpo, V.; Sebök, M.; van Niftrik, C.H.B.; Seystahl, K.; Hainc, N.; Kulcsar, Z.; Weller, M.; Regli, L.; Fierstra, J. Feasibility of Glioblastoma Tissue Response Mapping with Physiologic BOLD Imaging Using Precise Oxygen and Carbon Dioxide Challenge. Magn. Reson. Mater. Phy. 2022, 35, 29–44. [CrossRef] 77. Surendra, K.L.; Patwari, S.; Agrawal, S.; Chadaga, H.; Nagadi, A. Percentage Signal Intensity Recovery: A Step Ahead of RCBV in DSC MR Perfusion Imaging for the Differentiation of Common Neoplasms of Brain. Indian J. Cancer 2020, 57, 36–43. [CrossRef] [PubMed] 78. Karegowda, L.H.; Kadavigere, R.; Shenoy, P.M.; Paruthikunnan, S.M. Efficacy of Perfusion Computed Tomography (PCT) in Differentiating High-Grade Gliomas from Low Grade Gliomas, Lymphomas, Metastases and Abscess. J. Clin. Diagn. Res. 2017, 11, TC28–TC33. [CrossRef] 79. Lin, L.; Xue, Y.; Duan, Q.; Sun, B.; Lin, H.; Huang, X.; Chen, X. The Role of Cerebral Blood Flow Gradient in Peritumoral Edema for Differentiation of Glioblastomas from Solitary Metastatic Lesions. Oncotarget 2016, 7, 69051–69059. [CrossRef] 80. Jung, B.C.; Arevalo-Perez, J.; Lyo, J.K.; Holodny, A.I.; Karimi, S.; Young, R.J.; Peck, K.K. Comparison of Glioblastomas and Brain Metastases Using Dynamic Contrast-Enhanced Perfusion MRI. J. Neuroimaging 2016, 26, 240–246. [CrossRef] 81. Kamble, R.B.; Jayakumar, P.N.; Shivashankar, R. Role of Dynamic CT Perfusion Study in Evaluating Various Intracranial Space-Occupying Lesions. Indian J. Radiol. Imaging 2015, 25, 162. [CrossRef] 82. Zhao, J.; Yang, Z.; Luo, B.; Yang, J.; Chu, J. Quantitative Evaluation of Diffusion and Dynamic Contrast-Enhanced MR in Tumor Parenchyma and Peritumoral Area for Distinction of Brain Tumors. PLoS ONE 2015, 10, e0138573. [CrossRef] [PubMed] 83. Halshtok Neiman, O.; Sadetzki, S.; Chetrit, A.; Raskin, S.; Yaniv, G.; Hoffmann, C. Perfusion-Weighted Imaging of Peritumoral Edema Can Aid in the Differential Diagnosis of Glioblastoma Mulltiforme versus Brain Metastasis. Isr. Med. Assoc. J. 2013, 15, 103–105. [PubMed] 84. Bendini, M.; Marton, E.; Feletti, A.; Rossi, S.; Curtolo, S.; Inches, I.; Ronzon, M.; Longatti, P.; Di Paola, F. Primary and Metastatic Intraaxial Brain Tumors: Prospective Comparison of Multivoxel 2D Chemical-Shift Imaging (CSI) Proton MR Spectroscopy, Perfusion MRI, and Histopathological Findings in a Group of 159 Patients. Acta Neurochir. 2011, 153, 403–412. [CrossRef] [PubMed] 85. Schramm, P.; Xyda, A.; Klotz, E.; Tronnier, V.; Knauth, M.; Hartmann, M. Dynamic CT Perfusion Imaging of Intra-Axial Brain Tumours: Differentiation of High-Grade Gliomas from Primary CNS Lymphomas. Eur. Radiol. 2010, 20, 2482–2490. [CrossRef] [PubMed] 86. Fainardi, E.; Di Biase, F.; Borrelli, M.; Saletti, A.; Cavallo, M.; Sarubbo, S.; Ceruti, S.; Tamarozzi, R.; Chieregato, A. Potential Role of CT Perfusion Parameters in the Identification of Solitary Intra-Axial Brain Tumor Grading. Acta Neurochir. Supp.l 2010, 106, 283–287. [CrossRef] 87. Chiang, I.-C.; Hsieh, T.-J.; Chiu, M.-L.; Liu, G.-C.; Kuo, Y.-T.; Lin, W.-C. Distinction between Pyogenic Brain Abscess and Necrotic Brain Tumour Using 3-Tesla MR Spectroscopy, Diffusion and Perfusion Imaging. BJR 2009, 82, 813–820. [CrossRef] [PubMed] 88. Hakyemez, B.; Erdogan, C.; Bolca, N.; Yildirim, N.; Gokalp, G.; Parlak, M. Evaluation of Different Cerebral Mass Lesions by Perfusion-Weighted MR Imaging. J. Magn. Reson. Imaging 2006, 24, 817–824. [CrossRef] 89. Rollin, N.; Guyotat, J.; Streichenberger, N.; Honnorat, J.; Tran Minh, V.-A.; Cotton, F. Clinical Relevance of Diffusion and Perfusion Magnetic Resonance Imaging in Assessing Intra-Axial Brain Tumors. Neuroradiology 2006, 48, 150–159. [CrossRef] 90. Bulakbasi, N.; Kocaoglu, M.; Farzaliyev, A.; Tayfun, C.; Ucoz, T.; Somuncu, I. Assessment of Diagnostic Accuracy of Perfusion MR Imaging in Primary and Metastatic Solitary Malignant Brain Tumors. Am. J. Neuroradiol. 2005, 26, 2187–2199. 91. Kremer, S.; Grand, S.; Remy, C.; Esteve, F.; Lefournier, V.; Pasquier, B.; Hoffmann, D.; Benabid, A.L.; Le Bas, J.-F. Cerebral Blood Volume Mapping by MR Imaging in the Initial Evaluation of Brain Tumors. J. Neuroradiol. 2002, 29, 105–113. 92. Cho, S.K.; Na, D.G.; Ryoo, J.W.; Roh, H.G.; Moon, C.H.; Byun, H.S.; Kim, J.H. Perfusion MR Imaging: Clinical Utility for the Differential Diagnosis of Various Brain Tumors. Korean J. Radiol. 2002, 3, 171–179. [CrossRef] [PubMed] Cancers 2022, 14, 1432 18 of 23 93. Sunwoo, L.; Yun, T.J.; You, S.-H.; Yoo, R.-E.; Kang, K.M.; Choi, S.H.; Kim, J.; Sohn, C.-H.; Park, S.-W.; Jung, C.; et al. Differentiation of Glioblastoma from Brain Metastasis: Qualitative and Quantitative Analysis Using Arterial Spin Labeling MR Imaging. PLoS ONE 2016, 11, e0166662. [CrossRef] [PubMed] 94. Tupý, R.; Mírka, H.; Mracek, ˇ J.; Prib ˇ án, ˇ V.; Hes, O.; Vokurka, S.; Ferda, J. Tumor-Related Perfusion Changes in White Matter Adjacent to Brain Tumors: Pharmacodynamic Analysis of Dynamic 3T Magnetic Resonance Imaging. Anticancer. Res. 2018, 38, 4149–4152. [CrossRef] [PubMed] 95. Bauer, A.H.; Erly, W.; Moser, F.G.; Maya, M.; Nael, K. Differentiation of Solitary Brain Metastasis from Glioblastoma Multiforme: A Predictive Multiparametric Approach Using Combined MR Diffusion and Perfusion. Neuroradiology 2015, 57, 697–703. [CrossRef] [PubMed] 96. Neska-Matuszewska, M.; Bladowska, J.; Sasiade ˛ k, M.; Zimny, A. Differentiation of Glioblastoma Multiforme, Metastases and Primary Central Nervous System Lymphomas Using Multiparametric Perfusion and Diffusion MR Imaging of a Tumor Core and a Peritumoral Zone—Searching for a Practical Approach. PLoS ONE 2018, 13, e0191341. [CrossRef] 97. Mangla, R.; Kolar, B.; Zhu, T.; Zhong, J.; Almast, J.; Ekholm, S. Percentage Signal Recovery Derived from MR Dynamic Susceptibility Contrast Imaging Is Useful to Differentiate Common Enhancing Malignant Lesions of the Brain. Am. J. Neuroradiol. 2011. [CrossRef] 98. Gaudino, S.; Benenati, M.; Martucci, M.; Botto, A.; Infante, A.; Marrazzo, A.; Ramaglia, A.; Marziali, G.; Guadalupi, P.; Colosimo, C. Investigating Dynamic Susceptibility Contrast-Enhanced Perfusion-Weighted Magnetic Resonance Imaging in Posterior Fossa Tumors: Differences and Similarities with Supratentorial Tumors. Radiol. Med. 2020, 125, 416–422. [CrossRef] 99. Askaner, K.; Rydelius, A.; Engelholm, S.; Knutsson, L.; Lätt, J.; Abul-Kasim, K.; Sundgren, P. Differentiation between Glioblastomas and Brain Metastases and Regarding Their Primary Site of Malignancy Using Dynamic Susceptibility Contrast MRI at 3T. J. Neuroradiol. 2019, 46, 367–372. [CrossRef] 100. Onishi, S.; Kajiwara, Y.; Takayasu, T.; Kolakshyapati, M.; Ishifuro, M.; Amatya, V.J.; Takeshima, Y.; Sugiyama, K.; Kurisu, K.; Yamasaki, F. Perfusion Computed Tomography Parameters Are Useful for Differentiating Glioblastoma, Lymphoma, and Metastasis. World Neurosurg. 2018, 119, e890–e897. [CrossRef] 101. Gaa, J.; Warach, S.; Wen, P.; Thangaraj, V.; Wielopolski, P.; Edelman, R.R. Noninvasive Perfusion Imaging of Human Brain Tumors with EPISTAR. Eur. Radiol. 1996, 6, 518–522. [CrossRef] 102. Xi, Y.; Kang, X.; Wang, N.; Liu, T.; Zhu, Y.; Cheng, G.; Wang, K.; Li, C.; Guo, F.; Yin, H. Differentiation of Primary Central Nervous System Lymphoma from High-Grade Glioma and Brain Metastasis Using Arterial Spin Labeling and Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Eur. J. Radiol. 2019, 112, 59–64. [CrossRef] [PubMed] 103. Toh, C.H.; Wei, K.-C.; Chang, C.-N.; Ng, S.-H.; Wong, H.-F. Differentiation of Primary Central Nervous System Lymphomas and Glioblastomas: Comparisons of Diagnostic Performance of Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging without and with Contrast-Leakage Correction. Am. J. Neuroradiol. 2013, 34, 1145–1149. [CrossRef] [PubMed] 104. Xyda, A.; Haberland, U.; Klotz, E.; Jung, K.; Bock, H.C.; Schramm, R.; Knauth, M.; Schramm, P. Diagnostic Performance of Whole Brain Volume Perfusion CT in Intra-Axial Brain Tumors: Preoperative Classification Accuracy and Histopathologic Correlation. Eur. J. Radiol. 2012, 81, 4105–4111. [CrossRef] [PubMed] 105. Rizzo, L.; Crasto, S.G.; Moruno, P.G.; Cassoni, P.; Rudà, R.; Boccaletti, R.; Brosio, M.; De Lucchi, R.; Fava, C. Role of Diffusion- and Perfusion-Weighted MR Imaging for Brain Tumour Characterisation. Radiol. Med. 2009, 114, 645–659. [CrossRef] 106. Kickingereder, P.; Wiestler, B.; Sahm, F.; Heiland, S.; Roethke, M.; Schlemmer, H.-P.; Wick, W.; Bendszus, M.; Radbruch, A. Primary Central Nervous System Lymphoma and Atypical Glioblastoma: Multiparametric Differentiation by Using Diffusion-, Perfusion-, and Susceptibility-Weighted MR Imaging. Radiology 2014, 272, 843–850. [CrossRef] 107. Kickingereder, P.; Sahm, F.; Wiestler, B.; Roethke, M.; Heiland, S.; Schlemmer, H.-P.; Wick, W.; von Deimling, A.; Bendszus, M.; Radbruch, A. Evaluation of Microvascular Permeability with Dynamic Contrast-Enhanced MRI for the Differentiation of Primary CNS Lymphoma and Glioblastoma: Radiologic-Pathologic Correlation. Am. J. Neuroradiol. 2014, 35, 1503–1508. [CrossRef] 108. You, S.-H.; Yun, T.J.; Choi, H.J.; Yoo, R.-E.; Kang, K.M.; Choi, S.H.; Kim, J.; Sohn, C.-H. Differentiation between Primary CNS Lymphoma and Glioblastoma: Qualitative and Quantitative Analysis Using Arterial Spin Labeling MR Imaging. Eur. Radiol. 2018, 28, 3801–3810. [CrossRef] 109. Toh, C.H.; Wei, K.-C.; Chang, C.-N.; Ng, S.-H.; Wong, H.-F.; Lin, C.-P. Differentiation of Brain Abscesses from Glioblastomas and Metastatic Brain Tumors: Comparisons of Diagnostic Performance of Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging before and after Mathematic Contrast Leakage Correction. PLoS ONE 2014, 9, e109172. [CrossRef] 110. Jain, R.; Ellika, S.; Lehman, N.L.; Scarpace, L.; Schultz, L.R.; Rock, J.P.; Rosenblum, M.; Mikkelsen, T. Can Permeability Measurements Add to Blood Volume Measurements in Differentiating Tumefactive Demyelinating Lesions from High Grade Gliomas Using Perfusion CT? J. Neurooncol. 2010, 97, 383–388. [CrossRef] 111. Haris, M.; Gupta, R.K.; Singh, A.; Husain, N.; Husain, M.; Pandey, C.M.; Srivastava, C.; Behari, S.; Rathore, R.K.S. Differentiation of Infective from Neoplastic Brain Lesions by Dynamic Contrast-Enhanced MRI. Neuroradiology 2008, 50, 531. [CrossRef] 112. Rhun, E.L.; Guckenberger, M.; Smits, M.; Dummer, R.; Bachelot, T.; Sahm, F.; Galldiks, N.; de Azambuja, E.; Berghoff, A.S.; Metellus, P.; et al. EANO–ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up of Patients with Brain Metastasis from Solid Tumours. Ann. Oncol. 2021, 32, 1332–1347. [CrossRef] [PubMed] 113. Artzi, M.; Bokstein, F.; Blumenthal, D.T.; Aizenstein, O.; Liberman, G.; Corn, B.W.; Bashat, D.B. Differentiation between Vasogenic- Edema versus Tumor-Infiltrative Area in Patients with Glioblastoma during Bevacizumab Therapy: A Longitudinal MRI Study. Eur. J. Radiol. 2014, 83, 1250–1256. [CrossRef] [PubMed] Cancers 2022, 14, 1432 19 of 23 114. Villanueva-Meyer, J.E.; Mabray, M.C.; Cha, S. Current Clinical Brain Tumor Imaging. Neurosurgery 2017, 81, 397–415. [CrossRef] 115. Suh, C.H.; Kim, H.S.; Jung, S.C.; Choi, C.G.; Kim, S.J. Perfusion MRI as a Diagnostic Biomarker for Differentiating Glioma from Brain Metastasis: A Systematic Review and Meta-Analysis. Eur. Radiol. 2018, 28, 3819–3831. [CrossRef] 116. Lee, M.D.; Baird, G.L.; Bell, L.C.; Quarles, C.C.; Boxerman, J.L. Utility of Percentage Signal Recovery and Baseline Signal in DSC-MRI Optimized for Relative CBV Measurement for Differentiating Glioblastoma, Lymphoma, Metastasis, and Meningioma. Am. J. Neuroradiol. 2019, 40, 1445–1450. [CrossRef] 117. Cha, S.; Lupo, J.M.; Chen, M.-H.; Lamborn, K.R.; McDermott, M.W.; Berger, M.S.; Nelson, S.J.; Dillon, W.P. Differentiation of Glioblastoma Multiforme and Single Brain Metastasis by Peak Height and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging. Am. J. Neuroradiol. 2007, 28, 1078–1084. [CrossRef] [PubMed] 118. Lu, S.; Gao, Q.; Yu, J.; Li, Y.; Cao, P.; Shi, H.; Hong, X. Utility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Differentiating Glioblastoma, Primary Central Nervous System Lymphoma and Brain Metastatic Tumor. Eur. J. Radiol. 2016, 85, 1722–1727. [CrossRef] [PubMed] 119. Abdel Razek, A.A.K.; Talaat, M.; El-Serougy, L.; Abdelsalam, M.; Gaballa, G. Differentiating Glioblastomas from Solitary Brain Metastases Using Arterial Spin Labeling Perfusion—And Diffusion Tensor Imaging—Derived Metrics. World Neurosurg. 2019, 127, e593–e598. [CrossRef] 120. Suh, C.H.; Kim, H.S.; Jung, S.C.; Park, J.E.; Choi, C.G.; Kim, S.J. MRI as a Diagnostic Biomarker for Differentiating Primary Central Nervous System Lymphoma from Glioblastoma: A Systematic Review and Meta-Analysis. J. Magn. Reson. Imaging 2019, 50, 560–572. [CrossRef] 121. Fu, M.; Han, F.; Feng, C.; Chen, T.; Feng, X. Based on Arterial Spin Labeling Helps to Differentiate High-Grade Gliomas from Brain Solitary Metastasis: A Systematic Review and Meta-Analysis. Medicine 2019, 98, e15580. [CrossRef] 122. Hoang-Xuan, K.; Bessell, E.; Bromberg, J.; Hottinger, A.F.; Preusser, M.; Rudà, R.; Schlegel, U.; Siegal, T.; Soussain, C.; Abacioglu, U.; et al. Diagnosis and Treatment of Primary CNS Lymphoma in Immunocompetent Patients: Guidelines from the European Association for Neuro-Oncology. Lancet Oncol. 2015, 16, e322–e332. [CrossRef] 123. Weller, M.; Martus, P.; Roth, P.; Thiel, E.; Korfel, A.; for the German PCNSL Study Group. Surgery for Primary CNS Lymphoma? Challenging a Paradigm. Neuro-Oncology 2012, 14, 1481–1484. [CrossRef] [PubMed] 124. Xing, Z.; You, R.X.; Li, J.; Liu, Y.; Cao, D.R. Differentiation of Primary Central Nervous System Lymphomas from High-Grade Gliomas by RCBV and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging. Clin. Neuroradiol. 2014, 24, 329–336. [CrossRef] [PubMed] 125. Xu, W.; Wang, Q.; Shao, A.; Xu, B.; Zhang, J. The Performance of MR Perfusion-Weighted Imaging for the Differentiation of High-Grade Glioma from Primary Central Nervous System Lymphoma: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0173430. [CrossRef] [PubMed] 126. Johnson, G.; Wetzel, S.G.; Cha, S.; Babb, J.; Tofts, P.S. Measuring Blood Volume and Vascular Transfer Constant from Dynamic, T-Weighted Contrast-Enhanced MRI. Magn. Reson. Med. 2004, 51, 961–968. [CrossRef] 127. Lin, X.; Lee, M.; Buck, O.; Woo, K.M.; Zhang, Z.; Hatzoglou, V.; Omuro, A.; Arevalo-Perez, J.; Thomas, A.A.; Huse, J.; et al. Diagnostic Accuracy of T1-Weighted Dynamic Contrast-Enhanced–MRI and DWI-ADC for Differentiation of Glioblastoma and Primary CNS Lymphoma. Am. J. Neuroradiol. 2017, 38, 485–491. [CrossRef] [PubMed] 128. Choi, Y.S.; Lee, H.-J.; Ahn, S.S.; Chang, J.H.; Kang, S.-G.; Kim, E.H.; Kim, S.H.; Lee, S.-K. Primary Central Nervous System Lymphoma and Atypical Glioblastoma: Differentiation Using the Initial Area under the Curve Derived from Dynamic Contrast- Enhanced MR and the Apparent Diffusion Coefficient. Eur. Radiol. 2017, 27, 1344–1351. [CrossRef] 129. Okuchi, S.; Rojas-Garcia, A.; Ulyte, A.; Lopez, I.; Ušinskiene, ˙ J.; Lewis, M.; Hassanein, S.M.; Sanverdi, E.; Golay, X.; Thust, S.; et al. Diagnostic Accuracy of Dynamic Contrast-Enhanced Perfusion MRI in Stratifying Gliomas: A Systematic Review and Meta- Analysis. Cancer Med. 2019, 8, 5564–5573. [CrossRef] 130. Di, N.; Cheng, W.; Chen, H.; Zhai, F.; Liu, Y.; Mu, X.; Chu, Z.; Lu, N.; Liu, X.; Wang, B. Utility of Arterial Spin Labelling MRI for Discriminating Atypical High-Grade Glioma from Primary Central Nervous System Lymphoma. Clin. Radiol. 2019, 74, 165.e1–165.e9. [CrossRef] 131. Warnke, P.C.; Timmer, J.; Ostertag, C.B.; Kopitzki, K. Capillary Physiology and Drug Delivery in Central Nervous System Lymphomas. Ann. Neurol. 2005, 57, 136–139. [CrossRef] 132. Muccio, C.F.; Caranci, F.; D’Arco, F.; Cerase, A.; De Lipsis, L.; Esposito, G.; Tedeschi, E.; Andreula, C. Magnetic Resonance Features of Pyogenic Brain Abscesses and Differential Diagnosis Using Morphological and Functional Imaging Studies: A Pictorial Essay. J. Neuroradiol. 2014, 41, 153–167. [CrossRef] [PubMed] 133. Xu, X.-X.; Li, B.; Yang, H.-F.; Du, Y.; Li, Y.; Wang, W.-X.; Zheng, H.-J.; Gong, Q.-Y. Can Diffusion-Weighted Imaging Be Used to Differentiate Brain Abscess from Other Ring-Enhancing Brain Lesions? A Meta-Analysis. Clin. Radiol. 2014, 69, 909–915. [CrossRef] 134. Erdogan, C.; Hakyemez, B.; Yildirim, N.; Parlak, M. Brain Abscess and Cystic Brain Tumor: Discrimination With Dynamic Susceptibility Contrast Perfusion-Weighted MRI. J. Comput. Assist. Tomogr. 2005, 29, 663–667. [CrossRef] 135. Holmes, T.M.; Petrella, J.R.; Provenzale, J.M. Distinction Between Cerebral Abscesses and High-Grade Neoplasms by Dynamic Susceptibility Contrast Perfusion MRI. Am. J. Roentgenol. 2004, 183, 1247–1252. [CrossRef] [PubMed] Cancers 2022, 14, 1432 20 of 23 136. Chawalparit, O.; Artkaew, C.; Anekthananon, T.; Tisavipat, N.; Charnchaowanish, P.; Sangruchi, T. Diagnostic Accuracy of Perfusion CT in Differentiating Brain Abscess from Necrotic Tumor. J. Med. Assoc. Thai. 2009, 92, 537–542. [PubMed] 137. Blasel, S.; Pfeilschifter, W.; Jansen, V.; Mueller, K.; Zanella, F.; Hattingen, E. Metabolism and Regional Cerebral Blood Volume in Autoimmune Inflammatory Demyelinating Lesions Mimicking Malignant Gliomas. J. Neurol. 2011, 258, 113–122. [CrossRef] 138. Hiremath, S.B.; Muraleedharan, A.; Kumar, S.; Nagesh, C.; Kesavadas, C.; Abraham, M.; Kapilamoorthy, T.R.; Thomas, B. Combining Diffusion Tensor Metrics and DSC Perfusion Imaging: Can It Improve the Diagnostic Accuracy in Differentiating Tumefactive Demyelination from High-Grade Glioma? Am. J. Neuroradiol. 2017, 38, 685–690. [CrossRef] [PubMed] 139. Cha, S.; Pierce, S.; Knopp, E.A.; Johnson, G.; Yang, C.; Ton, A.; Litt, A.W.; Zagzag, D. Dynamic Contrast-Enhanced T2*-Weighted MR Imaging of Tumefactive Demyelinating Lesions. Am. J. Neuroradiol. 2001, 22, 1109–1116. [PubMed] 140. Parks, N.E.; Bhan, V.; Shankar, J.J. Perfusion Imaging of Tumefactive Demyelinating Lesions Compared to High Grade Gliomas. Can. J. Neurol. Sci. 2016, 43, 316–318. [CrossRef] [PubMed] 141. Jain, R.; Griffith, B.; Alotaibi, F.; Zagzag, D.; Fine, H.; Golfinos, J.; Schultz, L. Glioma Angiogenesis and Perfusion Imaging: Understanding the Relationship between Tumor Blood Volume and Leakiness with Increasing Glioma Grade. Am. J. Neuroradiol. 2015, 36, 2030–2035. [CrossRef] 142. Rani, N.; Singh, B.; Kumar, N.; Singh, P.; Hazari, P.P.; Jaswal, A.; Gupta, S.K.; Chhabra, R.; Radotra, B.D.; Mishra, A.K. The Diagnostic Performance of 99mTc-Methionine Single-Photon Emission Tomography in Grading Glioma Preoperatively: A Comparison with Histopathology and Ki-67 Indices. Nucl. Med. Commun. 2020, 41, 848–857. [CrossRef] [PubMed] 143. Wang, C.; Dong, H. Ki-67 Labeling Index and the Grading of Cerebral Gliomas by Using Intravoxel Incoherent Motion Diffusion- Weighted Imaging and Three-Dimensional Arterial Spin Labeling Magnetic Resonance Imaging. Acta Radiol. 2020, 61, 1057–1063. [CrossRef] [PubMed] 144. Sasi, S.D.; Ramaniharan, A.K.; Bhattacharjee, R.; Gupta, R.K.; Saha, I.; Van Cauteren, M.; Shah, T.; Gopalakrishnan, K.; Gupta, A.; Singh, A. Evaluating Feasibility of High Resolution T1-Perfusion MRI with Whole Brain Coverage Using Compressed SENSE: Application to Glioma Grading. Eur. J. Radiol. 2020, 129, 109049. [CrossRef] 145. Kang, X.; Xi, Y.; Liu, T.; Wang, N.; Zhu, Y.; Wang, X.; Guo, F. Grading of Glioma: Combined Diagnostic Value of Amide Proton Transfer Weighted, Arterial Spin Labeling and Diffusion Weighted Magnetic Resonance Imaging. BMC Med. Imaging 2020, 20, 50. [CrossRef] 146. Grewal, D.S.; Rajesh, U.; Sreedhar, C.; Awasthi, S.; Vijayakumar, C. Evaluation of Brain Tumours Using Magnetic Resonance Perfusion Imaging: A Prospective Study. JCDR 2020, 14, 1–4. [CrossRef] 147. Hashido, T.; Saito, S.; Ishida, T. A Radiomics-Based Comparative Study on Arterial Spin Labeling and Dynamic Susceptibility Contrast Perfusion-Weighted Imaging in Gliomas. Sci. Rep. 2020, 10, 6121. [CrossRef] [PubMed] 148. Song, S.; Wang, L.; Yang, H.; Shan, Y.; Cheng, Y.; Xu, L.; Dong, C.; Zhao, G.; Lu, J. Static 18F-FET PET and DSC-PWI Based on Hybrid PET/MR for the Prediction of Gliomas Defined by IDH and 1p/19q Status. Eur. Radiol. 2020, 31, 4087–4096. [CrossRef] 149. Alkanhal, H.; Das, K.; Poptani, H. Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging Methods in Nonenhancing Gliomas. World Neurosurg. 2020, 141, 123–130. [CrossRef] [PubMed] 150. Alkanhal, H.; Das, K.; Rathi, N.; Syed, K.; Poptani, H. Differentiating Nonenhancing Grade II Gliomas from Grade III Gliomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI. World Neurosurg. 2020, 146, e555–e564. [CrossRef] 151. Hasan, A.-M.S.; Hasan, A.K.; Megally, H.I.; Khallaf, M.; Haseib, A. The Combined Role of MR Spectroscopy and Perfusion Imaging in Preoperative Differentiation between High- and Low-Grade Gliomas. Egypt. J. Radiol. Nucl. Med. 2019, 50, 72. [CrossRef] 152. Conte, G.M.; Altabella, L.; Castellano, A.; Cuccarini, V.; Bizzi, A.; Grimaldi, M.; Costa, A.; Caulo, M.; Falini, A.; Anzalone, N. Comparison of T1 Mapping and Fixed T1 Method for Dynamic Contrast-Enhanced MRI Perfusion in Brain Gliomas. Eur. Radiol. 2019, 29, 3467–3479. [CrossRef] [PubMed] 153. Wang, N.; Xie, S.; Liu, H.; Chen, G.; Zhang, W. Arterial Spin Labeling for Glioma Grade Discrimination: Correlations with IDH1 Genotype and 1p/19q Status. Transl. Oncol. 2019, 12, 749–756. [CrossRef] [PubMed] 154. Qu, Y.; Zhou, L.; Jiang, J.; Quan, G.; Wei, X. Combination of Three-Dimensional Arterial Spin Labeling and Stretched-Exponential Model in Grading of Gliomas. Medicine 2019, 98, e16012. [CrossRef] [PubMed] 155. Saini, J.; Gupta, R.K.; Kumar, M.; Singh, A.; Saha, I.; Santosh, V.; Beniwal, M.; Kandavel, T.; Cauteren, M.V. Comparative Evaluation of Cerebral Gliomas Using RCBV Measurements during Sequential Acquisition of T1-Perfusion and T2*-Perfusion MRI. PLoS ONE 2019, 14, e0215400. [CrossRef] [PubMed] 156. Komatsu, K.; Wanibuchi, M.; Mikami, T.; Akiyama, Y.; Iihoshi, S.; Miyata, K.; Sugino, T.; Suzuki, K.; Kanno, A.; Noshiro, S.; et al. Arterial Spin Labeling Method as a Supplemental Predictor to Distinguish Between High- and Low-Grade Gliomas. World Neurosurg. 2018, 114, e495–e500. [CrossRef] [PubMed] 157. Kikuchi, K.; Hiwatashi, A.; Togao, O.; Yamashita, K.; Kamei, R.; Kitajima, M.; Kanoto, M.; Takahashi, H.; Uchiyama, Y.; Harada, M.; et al. Usefulness of Perfusion- and Diffusion-Weighted Imaging to Differentiate between Pilocytic Astrocytomas and High-Grade Gliomas: A Multicenter Study in Japan. Neuroradiology 2018, 60, 391–401. [CrossRef] [PubMed] 158. Gupta, P.K.; Saini, J.; Sahoo, P.; Patir, R.; Ahlawat, S.; Beniwal, M.; Thennarasu, K.; Santosh, V.; Gupta, R.K. Role of Dynamic Contrast-Enhanced Perfusion Magnetic Resonance Imaging in Grading of Pediatric Brain Tumors on 3T. PNE 2017, 52, 298–305. [CrossRef] Cancers 2022, 14, 1432 21 of 23 159. Wu, R.; Watanabe, Y.; Arisawa, A.; Takahashi, H.; Tanaka, H.; Fujimoto, Y.; Watabe, T.; Isohashi, K.; Hatazawa, J.; Tomiyama, N. Whole-Tumor Histogram Analysis of the Cerebral Blood Volume Map: Tumor Volume Defined by 11C-Methionine Positron Emission Tomography Image Improves the Diagnostic Accuracy of Cerebral Glioma Grading. Jpn. J. Radiol. 2017, 35, 613–621. [CrossRef] 160. Ma, H.; Wang, Z.; Xu, K.; Shao, Z.; Yang, C.; Xu, P.; Liu, X.; Hu, C.; Lu, X.; Rong, Y. Three-Dimensional Arterial Spin Labeling Imaging and Dynamic Susceptibility Contrast Perfusion-Weighted Imaging Value in Diagnosing Glioma Grade Prior to Surgery. Exp. Ther. Med. 2017, 13, 2691–2698. [CrossRef] 161. Choi, Y.S.; Ahn, S.S.; Lee, S.-K.; Chang, J.H.; Kang, S.-G.; Kim, S.H.; Zhou, J. Amide Proton Transfer Imaging to Discriminate between Low- and High-Grade Gliomas: Added Value to Apparent Diffusion Coefficient and Relative Cerebral Blood Volume. Eur. Radiol. 2017, 27, 3181–3189. [CrossRef] 162. Ulyte, A.; Katsaros, V.K.; Liouta, E.; Stranjalis, G.; Boskos, C.; Papanikolaou, N.; Usinskiene, J.; Bisdas, S. Prognostic Value of Preoperative Dynamic Contrast-Enhanced MRI Perfusion Parameters for High-Grade Glioma Patients. Neuroradiology 2016, 58, 1197–1208. [CrossRef] [PubMed] 163. Wang, P.; Li, J.; Diao, Q.; Lin, Y.; Zhang, J.; Li, L.; Yang, G.; Fang, X.; Li, X.; Chen, Y.; et al. Assessment of Glioma Response to Radiotherapy Using 3D Pulsed-Continuous Arterial Spin Labeling and 3D Segmented Volume. Eur. J. Radiol. 2016, 85, 1987–1992. [CrossRef] [PubMed] 164. Yang, S.; Zhao, B.; Wang, G.; Xiang, J.; Xu, S.; Liu, Y.; Zhao, P.; Pfeuffer, J.; Qian, T. Improving the Grading Accuracy of Astrocytic Neoplasms Noninvasively by Combining Timing Information with Cerebral Blood Flow: A Multi-TI Arterial Spin-Labeling MR Imaging Study. Am. J. Neuroradiol. 2016, 37, 2209–2216. [CrossRef] [PubMed] 165. Ahmad, N.; Shaukat, A.; Rehan, A.; Rashid, S. Diagnostic Accuracy of Perfusion Computed Tomography in Cerebral Glioma Grading. J. Coll. Physicians Surg. Pak. 2016, 26, 562–565. [PubMed] 166. Santarosa, C.; Castellano, A.; Conte, G.M.; Cadioli, M.; Iadanza, A.; Terreni, M.R.; Franzin, A.; Bello, L.; Caulo, M.; Falini, A.; et al. Dynamic Contrast-Enhanced and Dynamic Susceptibility Contrast Perfusion MR Imaging for Glioma Grading: Preliminary Comparison of Vessel Compartment and Permeability Parameters Using Hotspot and Histogram Analysis. Eur. J. Radiol. 2016, 85, 1147–1156. [CrossRef] 167. Shen, N.; Zhao, L.; Jiang, J.; Jiang, R.; Su, C.; Zhang, S.; Tang, X.; Zhu, W. Intravoxel Incoherent Motion Diffusion-Weighted Imaging Analysis of Diffusion and Microperfusion in Grading Gliomas and Comparison with Arterial Spin Labeling for Evaluation of Tumor Perfusion. J. Magn. Reson. Imaging 2016, 44, 620–632. [CrossRef] 168. Gao, F.; Guo, R.; Hu, X.-J.; Li, C.-J.; Li, M. Noninvasive Tumor Grading of Glioblastomas Before Surgery Using Arterial Spin Labeling. A Cohort Study. Available online: https://pubmed.ncbi.nlm.nih.gov/26860009/ (accessed on 2 February 2021). 169. Sunwoo, L.; Choi, S.H.; Yoo, R.-E.; Kang, K.M.; Yun, T.J.; Kim, T.M.; Lee, S.-H.; Park, C.-K.; Kim, J.; Park, S.-W.; et al. Para- doxical Perfusion Metrics of High-Grade Gliomas with an Oligodendroglioma Component: Quantitative Analysis of Dynamic Susceptibility Contrast Perfusion MR Imaging. Neuroradiology 2015, 57, 1111–1120. [CrossRef] 170. Smitha, K.A.; Gupta, A.K.; Jayasree, R.S. Relative Percentage Signal Intensity Recovery of Perfusion Metrics—an Efficient Tool for Differentiating Grades of Glioma. BJR 2015, 88, 20140784. [CrossRef] 171. Xiao, H.-F.; Chen, Z.-Y.; Lou, X.; Wang, Y.-L.; Gui, Q.-P.; Wang, Y.; Shi, K.-N.; Zhou, Z.-Y.; Zheng, D.-D.; Wang, D.J.J.; et al. Astrocytic Tumour Grading: A Comparative Study of Three-Dimensional Pseudocontinuous Arterial Spin Labelling, Dynamic Susceptibility Contrast-Enhanced Perfusion-Weighted Imaging, and Diffusion-Weighted Imaging. Eur. Radiol. 2015, 25, 3423–3430. [CrossRef] 172. Lin, Y.; Li, J.; Zhang, Z.; Xu, Q.; Zhou, Z.; Zhang, Z.; Zhang, Y.; Zhang, Z. Comparison of Intravoxel Incoherent Motion Diffusion- Weighted MR Imaging and Arterial Spin Labeling MR Imaging in Gliomas. Available online: https://www.hindawi.com/ journals/bmri/2015/234245/ (accessed on 2 February 2021). 173. Arevalo-Perez, J.; Peck, K.K.; Young, R.J.; Holodny, A.I.; Karimi, S.; Lyo, J.K. Dynamic Contrast-Enhanced Perfusion MRI and Diffusion-Weighted Imaging in Grading of Gliomas. J. Neuroimaging 2015, 25, 792–798. [CrossRef] 174. Aprile, I.; Giovannelli, G.; Fiaschini, P.; Muti, M.; Kouleridou, A.; Caputo, N. High- and Low-Grade Glioma Differentiation: The Role of Percentage Signal Recovery Evaluation in MR Dynamic Susceptibility Contrast Imaging. Radiol. Med. 2015, 120, 967–974. [CrossRef] [PubMed] 175. Tietze, A.; Mouridsen, K.; Mikkelsen, I.K. The Impact of Reliable Prebolus T1 Measurements or a Fixed T1 Value in the Assessment of Glioma Patients with Dynamic Contrast Enhancing MRI. Neuroradiology 2015, 57, 561–572. [CrossRef] [PubMed] 176. Tietze, A.; Boldsen, J.K.; Mouridsen, K.; Ribe, L.; Dyve, S.; Cortnum, S.; Østergaard, L.; Borghammer, P. Spatial Distribution of Malignant Tissue in Gliomas: Correlations of 11C-L-Methionine Positron Emission Tomography and Perfusion- and Diffusion- Weighted Magnetic Resonance Imaging. Acta Radiol. 2015, 56, 1135–1144. [CrossRef] [PubMed] 177. Cebeci, H.; Aydin, O.; Ozturk-Isik, E.; Gumus, C.; Inecikli, F.; Bekar, A.; Kocaeli, H.; Hakyemez, B. Assesment of Perfusion in Glial Tumors with Arterial Spin Labeling; Comparison with Dynamic Susceptibility Contrast Method. Eur. J. Radiol. 2014, 83, 1914–1919. [CrossRef] 178. Fudaba, H.; Shimomura, T.; Abe, T.; Matsuta, H.; Momii, Y.; Sugita, K.; Ooba, H.; Kamida, T.; Hikawa, T.; Fujiki, M. Comparison of Multiple Parameters Obtained on 3T Pulsed Arterial Spin-Labeling, Diffusion Tensor Imaging, and MRS and the Ki-67 Labeling Index in Evaluating Glioma Grading. Am. J. Neuroradiol. 2014, 35, 2091–2098. [CrossRef] Cancers 2022, 14, 1432 22 of 23 179. Van Cauter, S.; De Keyzer, F.; Sima, D.M.; Croitor Sava, A.; D’Arco, F.; Veraart, J.; Peeters, R.R.; Leemans, A.; Van Gool, S.; Wilms, G.; et al. Integrating Diffusion Kurtosis Imaging, Dynamic Susceptibility-Weighted Contrast-Enhanced MRI, and Short Echo Time Chemical Shift Imaging for Grading Gliomas. Neuro-Oncology 2014, 16, 1010–1021. [CrossRef] 180. Alexiou, G.A.; Zikou, A.; Tsiouris, S.; Goussia, A.; Kosta, P.; Papadopoulos, A.; Voulgaris, S.; Kyritsis, A.P.; Fotopoulos, A.D.; Argyropoulou, M.I. Correlation of Diffusion Tensor, Dynamic Susceptibility Contrast MRI and 99mTc-Tetrofosmin Brain SPECT with Tumour Grade and Ki-67 Immunohistochemistry in Glioma. Clin. Neurol. Neurosurg. 2014, 116, 41–45. [CrossRef] 181. Yoon, J.H.; Kim, J.; Kang, W.J.; Sohn, C.-H.; Choi, S.H.; Yun, T.J.; Eun, Y.; Song, Y.S.; Chang, K.-H. Grading of Cerebral Glioma with Multiparametric MR Imaging and 18F-FDG-PET: Concordance and Accuracy. Eur. Radiol. 2014, 24, 380–389. [CrossRef] 182. Kim, H.; Choi, S.H.; Kim, J.-H.; Ryoo, I.; Kim, S.C.; Yeom, J.A.; Shin, H.; Jung, S.C.; Lee, A.L.; Yun, T.J.; et al. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading. PLoS ONE 2013, 8, e63462. [CrossRef] 183. Roy, B.; Awasthi, R.; Bindal, A.; Sahoo, P.; Kumar, R.; Behari, S.; Ojha, B.K.; Husain, N.; Pandey, C.M.; Rathore, R.K.S.; et al. Comparative Evaluation of 3-Dimensional Pseudocontinuous Arterial Spin Labeling With Dynamic Contrast-Enhanced Perfusion Magnetic Resonance Imaging in Grading of Human Glioma. J. Comput. Assist. Tomogr. 2013, 37, 321–326. [CrossRef] 184. Awasthi, R.; Rathore, R.K.S.; Soni, P.; Sahoo, P.; Awasthi, A.; Husain, N.; Behari, S.; Singh, R.K.; Pandey, C.M.; Gupta, R.K. Discriminant Analysis to Classify Glioma Grading Using Dynamic Contrast-Enhanced MRI and Immunohistochemical Markers. Neuroradiology 2012, 54, 205–213. [CrossRef] [PubMed] 185. Emblem, K.E.; Scheie, D.; Due-Tonnessen, P.; Nedregaard, B.; Nome, T.; Hald, J.K.; Beiske, K.; Meling, T.R.; Bjornerud, A. Histogram Analysis of MR Imaging–Derived Cerebral Blood Volume Maps: Combined Glioma Grading and Identification of Low-Grade Oligodendroglial Subtypes. Am. J. Neuroradiol. 2008, 29, 1664–1670. [CrossRef] [PubMed] 186. Comte, F.; Bauchet, L.; Rigau, V.; Hauet, J.R.; Fabbro, M.; Coubes, P.; Chevalier, J.; Mariano-Goulart, D.; Rossi, M.; Zanca, M. Correlation of Preoperative Thallium SPECT with Histological Grading and Overall Survival in Adult Gliomas. Nucl. Med. Commun. 2006, 27, 137–142. [CrossRef] [PubMed] 187. Warmuth, C.; Günther, M.; Zimmer, C. Quantification of Blood Flow in Brain Tumors: Comparison of Arterial Spin Labeling and Dynamic Susceptibility-Weighted Contrast-Enhanced MR Imaging. Radiology 2003, 228, 523–532. [CrossRef] 188. Boxerman, J.L.; Schmainda, K.M.; Weisskoff, R.M. Relative Cerebral Blood Volume Maps Corrected for Contrast Agent Extrava- sation Significantly Correlate with Glioma Tumor Grade, Whereas Uncorrected Maps Do Not. Am. J. Neuroradiol. 2006, 27, 859–867. 189. Lucas, J.T., Jr.; Knapp, B.J.; Uh, J.; Hua, C.-H.; Merchant, T.E.; Hwang, S.N.; Patay, Z.; Broniscer, A. Posttreatment DSC-MRI Is Predictive of Early Treatment Failure in Children with Supratentorial High-Grade Glioma Treated with Erlotinib. Clin. Neuroradiol. 2018, 28, 393–400. [CrossRef] 190. Tateishi, K.; Tateishi, U.; Sato, M.; Yamanaka, S.; Kanno, H.; Murata, H.; Inoue, T.; Kawahara, N. Application of 62Cu-Diacetyl-Bis (N4-Methylthiosemicarbazone) PET Imaging to Predict Highly Malignant Tumor Grades and Hypoxia-Inducible Factor-1 Expression in Patients with Glioma. Am. J. Neuroradiol. 2013, 34, 92–99. [CrossRef] 191. Law, M.; Yang, S.; Wang, H.; Babb, J.S.; Johnson, G.; Cha, S.; Knopp, E.A.; Zagzag, D. Glioma Grading: Sensitivity, Specificity, and Predictive Values of Perfusion MR Imaging and Proton MR Spectroscopic Imaging Compared with Conventional MR Imaging. Am. J. Neuroradiol. 2003, 24, 1989–1998. 192. Hong, E.K.; Choi, S.H.; Shin, D.J.; Jo, S.W.; Yoo, R.-E.; Kang, K.M.; Yun, T.J.; Kim, J.; Sohn, C.-H.; Park, S.-H.; et al. Comparison of Genetic Profiles and Prognosis of High-Grade Gliomas Using Quantitative and Qualitative MRI Features: A Focus on G3 Gliomas. Korean J. Radiol. 2021, 22, 233–242. [CrossRef] 193. Shin, J.H.; Lee, H.K.; Kwun, B.D.; Kim, J.-S.; Kang, W.; Choi, C.G.; Suh, D.C. Using Relative Cerebral Blood Flow and Volume to Evaluate the Histopathologic Grade of Cerebral Gliomas: Preliminary Results. Am. J. Roentgenol. 2002, 179, 783–789. [CrossRef] 194. Law, M.; Young, R.; Babb, J.; Pollack, E.; Johnson, G. Histogram Analysis versus Region of Interest Analysis of Dynamic Susceptibility Contrast Perfusion MR Imaging Data in the Grading of Cerebral Gliomas. Am. J. Neuroradiol. 2007, 28, 761–766. [PubMed] 195. Spampinato, M.V.; Smith, J.K.; Kwock, L.; Ewend, M.; Grimme, J.D.; Camacho, D.L.A.; Castillo, M. Cerebral Blood Volume Measurements and Proton MR Spectroscopy in Grading of Oligodendroglial Tumors. Am. J. Roentgenol. 2007, 188, 204–212. [CrossRef] [PubMed] 196. Maia, A.C.M.; Malheiros, S.M.F.; da Rocha, A.J.; da Silva, C.J.; Gabbai, A.A.; Ferraz, F.A.P.; Stávale, J.N. MR Cerebral Blood Volume Maps Correlated with Vascular Endothelial Growth Factor Expression and Tumor Grade in Nonenhancing Gliomas. Am. J. Neuroradiol. 2005, 26, 777–783. 197. McCullough, B.J.; Ader, V.; Aguedan, B.; Feng, X.; Susanto, D.; Benkers, T.L.; Henson, J.W.; Mayberg, M.; Cobbs, C.S.; Gwinn, R.P.; et al. Preoperative Relative Cerebral Blood Volume Analysis in Gliomas Predicts Survival and Mitigates Risk of Biopsy Sampling Error. J. Neurooncol. 2018, 136, 181–188. [CrossRef] [PubMed] 198. Lefranc, M.; Monet, P.; Desenclos, C.; Peltier, J.; Fichten, A.; Toussaint, P.; Sevestre, H.; Deramond, H.; Gars, D.L. Perfusion MRI as a Neurosurgical Tool for Improved Targeting in Stereotactic Tumor Biopsies. SFN 2012, 90, 240–247. [CrossRef] [PubMed] 199. Luan, J.; Wu, M.; Wang, X.; Qiao, L.; Guo, G.; Zhang, C. The Diagnostic Value of Quantitative Analysis of ASL, DSC-MRI and DKI in the Grading of Cerebral Gliomas: A Meta-Analysis. Radiat. Oncol. 2020, 15, 204. [CrossRef] [PubMed] Cancers 2022, 14, 1432 23 of 23 200. Delgado, A.F.; Delgado, A.F. Discrimination between Glioma Grades II and III Using Dynamic Susceptibility Perfusion MRI: A Meta-Analysis. Am. J. Neuroradiol. 2017, 38, 1348–1355. [CrossRef] 201. Abrigo, J.M.; Fountain, D.M.; Provenzale, J.M.; Law, E.K.; Kwong, J.S.; Hart, M.G.; Tam, W.W.S. Magnetic Resonance Perfusion for Differentiating Low-Grade from High-Grade Gliomas at First Presentation. Cochrane Database Syst. Rev. 2018, 1, CD011551. [CrossRef] 202. Pauliah, M.; Saxena, V.; Haris, M.; Husain, N.; Rathore, R.K.S.; Gupta, R.K. Improved T1-Weighted Dynamic Contrast-Enhanced MRI to Probe Microvascularity and Heterogeneity of Human Glioma. Magn. Reson. Imaging 2007, 25, 1292–1299. [CrossRef] 203. Brendle, C.; Hempel, J.-M.; Schittenhelm, J.; Skardelly, M.; Tabatabai, G.; Bender, B.; Ernemann, U.; Klose, U. Glioma Grading and Determination of IDH Mutation Status and ATRX Loss by DCE and ASL Perfusion. Clin. Neuroradiol. 2018, 28, 421–428. [CrossRef] 204. Li, X.; Zhu, Y.; Kang, H.; Zhang, Y.; Liang, H.; Wang, S.; Zhang, W. Glioma Grading by Microvascular Permeability Parameters Derived from Dynamic Contrast-Enhanced MRI and Intratumoral Susceptibility Signal on Susceptibility Weighted Imaging. Cancer Imaging 2015, 15, 4. [CrossRef] [PubMed] 205. Shin, K.E.; Ahn, K.J.; Choi, H.S.; Jung, S.L.; Kim, B.S.; Jeon, S.S.; Hong, Y.G. DCE and DSC MR Perfusion Imaging in the Differentiation of Recurrent Tumour from Treatment-Related Changes in Patients with Glioma. Clin. Radiol. 2014, 69, e264–e272. [CrossRef] [PubMed] 206. Haris, M.; Husain, N.; Singh, A.; Husain, M.; Srivastava, S.; Srivastava, C.; Behari, S.; Rathore, R.K.S.; Saksena, S.; Gupta, R.K. Dynamic Contrast-Enhanced Derived Cerebral Blood Volume Correlates Better With Leak Correction Than With No Correction for Vascular Endothelial Growth Factor, Microvascular Density, and Grading of Astrocytoma. J. Comput. Assist. Tomogr. 2008, 32, 955–965. [CrossRef] [PubMed] 207. Mills, S.J.; Patankar, T.A.; Haroon, H.A.; Balériaux, D.; Swindell, R.; Jackson, A. Do Cerebral Blood Volume and Contrast Transfer Coefficient Predict Prognosis in Human Glioma? Am. J. Neuroradiol. 2006, 27, 853–858. 208. Trinh, A.; Wintermark, M.; Iv, M. Clinical Review of Computed Tomography and MR Perfusion Imaging in Neuro-Oncology. Radiol. Clin. N. Am. 2021, 59, 323–334. [CrossRef] 209. Law, M.; Young, R.; Babb, J.; Rad, M.; Sasaki, T.; Zagzag, D.; Johnson, G. Comparing Perfusion Metrics Obtained from a Single Compartment Versus Pharmacokinetic Modeling Methods Using Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging with Glioma Grade. Am. J. Neuroradiol. 2006, 27, 1975–1982. 210. Nguyen, T.B.; Cron, G.O.; Mercier, J.F.; Foottit, C.; Torres, C.H.; Chakraborty, S.; Woulfe, J.; Jansen, G.H.; Caudrelier, J.M.; Sinclair, J.; et al. Preoperative Prognostic Value of Dynamic Contrast-Enhanced MRI–Derived Contrast Transfer Coefficient and Plasma Volume in Patients with Cerebral Gliomas. Am. J. Neuroradiol. 2015, 36, 63–69. [CrossRef] 211. Wang, L.; Wei, L.; Wang, J.; Li, N.; Gao, Y.; Ma, H.; Qu, X.; Zhang, M. Evaluation of Perfusion MRI Value for Tumor Progression Assessment after Glioma Radiotherapy: A Systematic Review and Meta-Analysis. Medicine 2020, 99, e23766. [CrossRef] 212. Kong, L.; Chen, H.; Yang, Y.; Chen, L. A Meta-Analysis of Arterial Spin Labelling Perfusion Values for the Prediction of Glioma Grade. Clin. Radiol. 2017, 72, 255–261. [CrossRef] 213. Falk Delgado, A.; De Luca, F.; van Westen, D.; Falk Delgado, A. Arterial Spin Labeling MR Imaging for Differentiation between High- and Low-Grade Glioma—A Meta-Analysis. Neuro-Oncology 2018, 20, 1450–1461. [CrossRef] 214. Alsaedi, A.; Doniselli, F.; Jäger, H.R.; Panovska-Griffiths, J.; Rojas-Garcia, A.; Golay, X.; Bisdas, S. The Value of Arterial Spin Labelling in Adults Glioma Grading: Systematic Review and Meta-Analysis. Oncotarget 2019, 10, 1589–1601. [CrossRef] [PubMed] 215. Ellika, S.K.; Jain, R.; Patel, S.C.; Scarpace, L.; Schultz, L.R.; Rock, J.P.; Mikkelsen, T. Role of Perfusion CT in Glioma Grading and Comparison with Conventional MR Imaging Features. Am. J. Neuroradiol. 2007, 28, 1981–1987. [CrossRef] [PubMed] 216. Ding, B.; Ling, H.W.; Chen, K.M.; Jiang, H.; Zhu, Y.B. Comparison of Cerebral Blood Volume and Permeability in Preoperative Grading of Intracranial Glioma Using CT Perfusion Imaging. Neuroradiology 2006, 48, 773–781. [CrossRef] [PubMed] 217. Boxerman, J.L.; Quarles, C.C.; Hu, L.S.; Erickson, B.J.; Gerstner, E.R.; Smits, M.; Kaufmann, T.J.; Barboriak, D.P.; Huang, R.H.; Wick, W.; et al. Consensus Recommendations for a Dynamic Susceptibility Contrast MRI Protocol for Use in High-Grade Gliomas. Neuro Oncol. 2020, 22, 1262–1275. [CrossRef] [PubMed] 218. Ellingson, B.M.; Bendszus, M.; Boxerman, J.; Barboriak, D.; Erickson, B.J.; Smits, M.; Nelson, S.J.; Gerstner, E.; Alexander, B.; Goldmacher, G.; et al. Consensus Recommendations for a Standardized Brain Tumor Imaging Protocol in Clinical Trials. Neuro. Oncol. 2015, 17, 1188–1198. [CrossRef] 219. Welker, K.; Boxerman, J.; Kalnin, A.; Kaufmann, T.; Shiroishi, M.; Wintermark, M.; American Society of Functional Neuroradiology MR Perfusion Standards and Practice Subcommittee of the ASFNR Clinical Practice Committee. ASFNR Recommendations for Clinical Performance of MR Dynamic Susceptibility Contrast Perfusion Imaging of the Brain. Am. J. Neuroradiol. 2015, 36, E41–E51. [CrossRef] 220. Alsop, D.C.; Detre, J.A.; Golay, X.; Günther, M.; Hendrikse, J.; Hernandez-Garcia, L.; Lu, H.; MacIntosh, B.J.; Parkes, L.M.; Smits, M.; et al. Recommended Implementation of Arterial Spin-Labeled Perfusion MRI for Clinical Applications: A Consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia. Magn. Reson. Med. 2015, 73, 102–116. [CrossRef] 221. Mutsaerts, H.J.M.M.; Petr, J.; Groot, P.; Vandemaele, P.; Ingala, S.; Robertson, A.D.; Václavu, ˚ L.; Groote, I.; Kuijf, H.; Zelaya, F.; et al. ExploreASL: An Image Processing Pipeline for Multi-Center ASL Perfusion MRI Studies. NeuroImage 2020, 219, 117031. [CrossRef]
Cancers – Pubmed Central
Published: Mar 10, 2022
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.