Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Barpanda, S. Nishimura, A. Yamada (2012)
High‐Voltage Pyrophosphate CathodesAdvanced Energy Materials, 2
Hyungsub Kim, In-chul Park, D. Seo, Seongsu Lee, Sung-Wook Kim, W. Kwon, Young‐Uk Park, C. Kim, Seokwoo Jeon, K. Kang (2012)
New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study.Journal of the American Chemical Society, 134 25
P. Barpanda, Tiannan Ye, S. Nishimura, S. Nishimura, Sai-Cheong Chung, Yuki Yamada, Yuki Yamada, M. Okubo, M. Okubo, Haoshen Zhou, Haoshen Zhou, A. Yamada, A. Yamada (2012)
Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteriesElectrochemistry Communications, 24
D. Stevens, J. Dahn (2001)
The Mechanisms of Lithium and Sodium Insertion in Carbon MaterialsJournal of The Electrochemical Society, 148
Zhaohui Chen, J. Dahn (2004)
Improving the Capacity Retention of LiCoO2 Cycled to 4.5 V by Heat-TreatmentElectrochemical and Solid State Letters, 7
R. Shakoor, D. Seo, Hyungsub Kim, Young‐Uk Park, Jongsoon Kim, Sung-Wook Kim, Hyeokjo Gwon, Seongsu Lee, K. Kang (2012)
A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteriesJournal of Materials Chemistry, 22
M. Doeff, M. Peng, Yan-ping Ma, L. Jonghe (1994)
Orthorhombic Na x MnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer BatteriesJournal of The Electrochemical Society, 141
Jean-Jacques Braconnier, C. Delmas, P. Hagenmuller (1982)
Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2Materials Research Bulletin, 17
N. Yabuuchi, Masataka Kajiyama, J. Iwatate, H. Nishikawa, Shuji Hitomi, R. Okuyama, Ryo Usui, Y. Yamada, S. Komaba (2012)
P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries.Nature materials, 11 6
J. Angenault, J. Couturier, M. Quarton, F. Robert (1995)
Structure of Na3.12Fe2.44(P2O7)2.ChemInform, 26
A. Appapillai, A. Mansour, Jaephil Cho, Y. Shao-horn (2007)
Microstructure of LiCoO2 with and without “AlPO4” Nanoparticle Coating: Combined STEM and XPS StudiesChemistry of Materials, 19
R. Gover, A. Bryan, P. Burns, J. Barker (2006)
The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3Solid State Ionics, 177
Y. Kawabe, N. Yabuuchi, Masataka Kajiyama, N. Fukuhara, Tokuo Inamasu, R. Okuyama, I. Nakai, S. Komaba (2012)
A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid-State Method for Rechargeable Na-Ion BatteriesElectrochemistry, 80
V. Palomares, P. Serras, I. Villaluenga, K. Hueso, J. Carretero‐González, T. Rojo (2012)
Na-ion batteries, recent advances and present challenges to become low cost energy storage systemsEnergy and Environmental Science, 5
Rui Wang, Xiqian Yu, J. Bai, Hong Li, Xuejie Huang, Liquan Chen, Xiao‐Qing Yang (2012)
Electrochemical decomposition of Li2CO3 in NiO–Li2CO3 nanocomposite thin film and powder electrodesJournal of Power Sources, 218
Donghan Kim, Sun‐Ho Kang, Michael Slater, Shawn Rood, J. Vaughey, N. Karan, M. Balasubramanian, C. Johnson (2011)
Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide CathodesAdvanced Energy Materials, 1
Seung‐Min Oh, Seung‐Taek Myung, J. Hassoun, B. Scrosati, Yang‐Kook Sun (2012)
Reversible NaFePO4 electrode for sodium secondary batteriesElectrochemistry Communications, 22
J. Barker, M. Saidi, Jeffrey Swoyer (2003)
A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 FElectrochemical and Solid State Letters, 6
P. Barpanda, M. Ati, B. Melot, G. Rousse, J. Chotard, M. Doublet, M. Sougrati, S. Corr, J. Jumas, J. Tarascon, J. Tarascon (2011)
A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure.Nature materials, 10 10
B. Ellis, W. Makahnouk, Y. Makimura, Kathryn Toghill, L. Nazar (2007)
A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries.Nature materials, 6 10
M. Doeff, Yan-ping Ma, S. Visco, L. Jonghe (1993)
Electrochemical Insertion of Sodium into CarbonJournal of The Electrochemical Society, 140
Jean-Jacques Braconnier, C. Delmas, C. Fouassier, P. Hagenmuller (1980)
Comportement electrochimique des phases NaxCoO2Materials Research Bulletin, 15
S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, Kazuma Gotoh, Kazuya Fujiwara (2011)
Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion BatteriesAdvanced Functional Materials, 21
J. Tarascon, G. Hull (1986)
Sodium intercalation into the layer oxides NaxMo2O4Solid State Ionics, 22
Yuwon Park, Dong-seon Shin, S. Woo, N. Choi, Kyung-Hee Shin, Seung Oh, Kyu-Tae Lee, Sung Hong (2012)
Sodium Terephthalate as an Organic Anode Material for Sodium Ion BatteriesAdvanced Materials, 24
Donghan Kim, Eungje Lee, Michael Slater, Wenquan Lu, Shawn Rood, Christopher Johnson (2012)
Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery applicationElectrochemistry Communications, 18
P. Serras, V. Palomares, A. Goñi, I. Muro, P. Kubiak, L. Lezama, T. Rojo (2012)
High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2xJournal of Materials Chemistry, 22
Nadir Recham, J. Chotard, L. Dupont, K. Djellab, M. Armand, J. Tarascon (2009)
Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode MaterialsJournal of The Electrochemical Society, 156
S. Nishimura, Megumi Nakamura, Ryuichi Natsui, A. Yamada (2010)
New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery.Journal of the American Chemical Society, 132 39
Sung-Wook Kim, D. Seo, Xiaohua Ma, G. Ceder, K. Kang (2012)
Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion BatteriesAdvanced Energy Materials, 2
Kyu Lee, T. Ramesh, F. Nan, G. Botton, L. Nazar (2011)
Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion BatteriesChemistry of Materials, 23
J.h. Tarascon, D. Guyomard, B. Wilkens, W. Mckinnon, P. Barboux (1992)
Chemical and electrochemical insertion of Na into the spinel λ-MnO2 phaseSolid State Ionics, 57
S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai (2012)
Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery.Inorganic chemistry, 51 11
B. Ellis, W. Makahnouk, W. Rowan-Weetaluktuk, D. Ryan, L. Nazar (2010)
Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni)†Chemistry of Materials, 22
R. Tripathi, G. Popov, B. Ellis, A. Huq, L. Nazar (2012)
Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation orderingEnergy and Environmental Science, 5
Premkumar Senguttuvan, G. Rousse, V. Seznec, J. Tarascon, M. Palacín (2011)
Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteriesChemistry of Materials, 23
P. Moreau, D. Guyomard, J. Gaubicher, F. Boucher (2010)
Structure and Stability of Sodium Intercalated Phases in Olivine FePO4Chemistry of Materials, 22
A new polyanion‐based compound, Na3.12M2.44(P2O7)2 (M = Fe, Fe0.5Mn0.5, Mn) is synthesized and examined as a cathode for Na ion batteries. Off‐stoichiometric synthesis induces the formation of a Na‐rich phase, Na3.32Fe2.34(P2O7)2 ‐ a member of the solid solution series Na4‐αFe2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8) ‐ which delivers a reversible capacity of about 85 mA h g−1 at ca. 3 V vs. Na/Na+ and exhibits very stable cycle performance. Above all, it shows fast kinetics for Na ions, delivering an almost constant 72% reversible capacity at rates between C/10 and 10C without the necessity for nanosizing or carbon coating. We attribute this to the spacious channel size along the a‐axis, along with a single phase transformation upon de/sodiation.
Advanced Energy Materials – Wiley
Published: Jun 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.