Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates

Length of huntingtin and its polyglutamine tract influences localization and frequency of... It is unclear how polyglutamine expansion is associated with the pathogenesis of Huntington disease (HD). Here, we provide evidence that polyglutamine expansion leads to the formation of large intracellular aggregates in vitro and in vivo. In vitro these huntingtin-containing aggregates disrupt normal cellular architecture and increase in frequency with polyglutamine length. Huntingtin truncated at nucleotide 1955, close to the caspase-3 cleavage site, forms perinuclear aggregates more readily than full-length huntingtin and increases the susceptibility of cells to death following apoptotic stimuli. Further truncation of huntingtin to nucleotide 436 results in both intranuclear and perinuclear aggregates. For a given protein size, increasing polyglutamine length is associated with increased cellular toxic-ity. Asymptomatic transgenic mice expressing full-length huntingtin with 138 polyglutamines form exclusively perinuclear aggregates in neurons. These data support the hypothesis that proteolytic cleavage of mutant huntingtin leads to the development of aggregates which compromise cell viability, and that their localization is influenced by protein length. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Genetics Springer Journals

Loading next page...
 
/lp/springer-journals/length-of-huntingtin-and-its-polyglutamine-tract-influences-knGoLddnD2

References (28)

Publisher
Springer Journals
Copyright
Copyright © 1998 by Nature Publishing Group
Subject
Biomedicine; Biomedicine, general; Human Genetics; Cancer Research; Agriculture; Gene Function; Animal Genetics and Genomics
ISSN
1061-4036
eISSN
1546-1718
DOI
10.1038/ng0298-150
Publisher site
See Article on Publisher Site

Abstract

It is unclear how polyglutamine expansion is associated with the pathogenesis of Huntington disease (HD). Here, we provide evidence that polyglutamine expansion leads to the formation of large intracellular aggregates in vitro and in vivo. In vitro these huntingtin-containing aggregates disrupt normal cellular architecture and increase in frequency with polyglutamine length. Huntingtin truncated at nucleotide 1955, close to the caspase-3 cleavage site, forms perinuclear aggregates more readily than full-length huntingtin and increases the susceptibility of cells to death following apoptotic stimuli. Further truncation of huntingtin to nucleotide 436 results in both intranuclear and perinuclear aggregates. For a given protein size, increasing polyglutamine length is associated with increased cellular toxic-ity. Asymptomatic transgenic mice expressing full-length huntingtin with 138 polyglutamines form exclusively perinuclear aggregates in neurons. These data support the hypothesis that proteolytic cleavage of mutant huntingtin leads to the development of aggregates which compromise cell viability, and that their localization is influenced by protein length.

Journal

Nature GeneticsSpringer Journals

Published: Feb 1, 1998

There are no references for this article.