Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Clegg, T. Linkhart, B. Olwin, S. Hauschka (1987)
Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factorThe Journal of Cell Biology, 105
Colin Stewart (1993)
Production of chimeras between embryonic stem cells and embryos.Methods in enzymology, 225
P. Zhao, E. Hoffman (2004)
Embryonic myogenesis pathways in muscle regenerationDevelopmental Dynamics, 229
Lizhao Wu, A. Bruin, H. Saavedra, Maja Starovič, A. Trimboli, Ying Yang, J. Opavska, P. Wilson, John Thompson, Michael Ostrowski, T. Rosol, L. Woollett, M. Weinstein, J. Cross, M. Robinson, G. Leone (2003)
Extra-embryonic function of Rb is essential for embryonic development and viabilityNature, 421
P. Puri, P. Puri, Vittorio Sartorelli, Vittorio Sartorelli, Xiang-Jiao Yang, Yasuo Hamamori, Vasily Ogryzko, Bruce Howard, L. Kedes, Jean Wang, Adolf Graessmann, Yoshihiro Nakatani, Massimo Levrero, Massimo Levrero (1997)
Differential roles of p300 and PCAF acetyltransferases in muscle differentiation.Molecular cell, 1 1
REFERENCES
Cecilia Östlund, G. Bonne, K. Schwartz, H. Worman (2001)
Properties of lamin A mutants found in Emery-Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy.Journal of cell science, 114 Pt 24
Jan Lammerding, Janet Hsiao, P. Schulze, Serguei Kozlov, Colin Stewart, Richard Lee (2005)
Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cellsThe Journal of Cell Biology, 170
S. Ait-Si-Ali, Valentina Guasconi, L. Fritsch, Hakima Yahi, Redha Sekhri, I. Naguibneva, P. Robin, F. Cabon, A. Polesskaya, A. Harel-Bellan (2004)
A Suv39h‐dependent mechanism for silencing S‐phase genes in differentiating but not in cycling cellsThe EMBO Journal, 23
S. Bione, E. Maestrini, S. Rivella, M. Mancini, S. Regis, G. Romeo, D. Toniolo (1994)
Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophyNature Genetics, 8
EMBO J
W. Steer, A. Abu-daya, S. Brickwood, K. Mumford, Niove Jordanaires, Julian Mitchell, C. Robinson, A. Thorne, M. Guille (2003)
Xenopus nucleosome assembly protein becomes tissue-restricted during development and can alter the expression of specific genesMechanisms of Development, 120
I. Dalkilic, L. Kunkel (2003)
Muscular dystrophies: genes to pathogenesis.Current opinion in genetics & development, 13 3
J. Harbour, Robin Luo, Angeline Santi, A. Postigo, D. Dean (1999)
Cdk Phosphorylation Triggers Sequential Intramolecular Interactions that Progressively Block Rb Functions as Cells Move through G1Cell, 98
T. Jacks, Amin Fazeli, E. Schmitt, R. Bronson, M. Goodell, R. Weinberg (1992)
Effects of an Rb mutation in the mouseNature, 359
Brett Johnson, R. Nitta, Richard Frock, L. Mounkes, D. Barbie, C. Stewart, E. Harlow, B. Kennedy (2004)
A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation.Proceedings of the National Academy of Sciences of the United States of America, 101 26
Muscular Dystrophy Association) and Federation to Eradicate Duchenne
Marta Lipinski, T. Jacks (1999)
The retinoblastoma gene family in differentiation and developmentOncogene, 18
C. Hutchison, H. Worman (2004)
A-type lamins: Guardians of the soma?Nature Cell Biology, 6
Erik Flemington, S. Speck, William Kaelin (1993)
E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product.Proceedings of the National Academy of Sciences of the United States of America, 90 15
Robin Luo, A. Postigo, D. Dean (1998)
Rb Interacts with Histone Deacetylase to Repress TranscriptionCell, 92
A. Magenta, C. Cenciarelli, Francesca Santa, P. Fuschi, F. Martelli, M. Caruso, A. Felsani (2003)
MyoD Stimulates RB Promoter Activity via the CREB/p300 Nuclear Transduction PathwayMolecular and Cellular Biology, 23
Y. Gruenbaum, A. Margalit, R. Goldman, D. Shumaker, K. Wilson (2005)
The nuclear lamina comes of ageNature Reviews Molecular Cell Biology, 6
R. Somech, S. Shaklai, O. Geller, N. Amariglio, A. Simon, G. Rechavi, E. Gal-Yam (2005)
The nuclear-envelope protein and transcriptional repressor LAP2β interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylationJournal of Cell Science, 118
Asoke Mal, Michael Sturniolo, R. Schiltz, Mrinal Ghosh, M. Harter (2001)
A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic programThe EMBO Journal, 20
Kenneth Lee, K. Wilson (2004)
All in the family: evidence for four new LEM-domain proteins Lem2 (NET-25), Lem3, Lem4 and Lem5 in the human genome.Symposia of the Society for Experimental Biology, 56
E. Markiewicz, T. Dechat, R. Foisner, R. Quinlan, C. Hutchison (2002)
Lamin A/C binding protein LAP2alpha is required for nuclear anchorage of retinoblastoma protein.Molecular biology of the cell, 13 12
C. R. Biol
A. Muchir, B. Engelen, M. Lammens, J. Mislow, E. McNally, K. Schwartz, G. Bonne (2003)
Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene.Experimental cell research, 291 2
S. Iezzi, G. Cossu, C. Nervi, V. Sartorelli, P. Puri (2002)
Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylasesProceedings of the National Academy of Sciences of the United States of America, 99
Asoke Mal, D. Chattopadhyay, M. Ghosh, R. Poon, T. Hunter, M. Harter (2000)
P21 and Retinoblastoma Protein Control the Absence of DNA Replication in Terminally Differentiated Muscle CellsThe Journal of Cell Biology, 149
V. Nikolova, Christiana Leimena, A. Mcmahon, J. Tan, S. Chandar, D. Jogia, S. Kesteven, J. Michalicek, R. Otway, F. Verheyen, Stephen Rainer, C. Stewart, D. Martin, M. Feneley, D. Fatkin (2004)
Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice.The Journal of clinical investigation, 113 3
P. Zhao, S. Iezzi, E. Carver, D. Dressman, T. Gridley, V. Sartorelli, E. Hoffman (2002)
Slug Is a Novel Downstream Target of MyoDThe Journal of Biological Chemistry, 277
Genes Dev
L. Ringrose, R. Paro (2001)
Remembering silenceBioEssays, 23
Jinwook Seo, M. Bakay, Yi-Wen Chen, S. Hilmer, B. Shneiderman, E. Hoffman (2004)
Interactively optimizing signal-to-noise ratios in expression profiling: project-specific algorithm selection and detection p-value weighting in Affymetrix microarraysBioinformatics, 20 16
J. Dunaief, B. Strober, S. Guha, P. Khavari, K. Ålin, J. Luban, M. Begemann, G. Crabtree, S. Goff (1994)
The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrestCell, 79
L. Mounkes, C. Stewart (2004)
Structural organization and functions of the nucleus in development, aging, and disease.Current topics in developmental biology, 61
C. Favreau, D. Higuet, J. Courvalin, B. Buendia (2004)
Expression of a Mutant Lamin A That Causes Emery-Dreifuss Muscular Dystrophy Inhibits In Vitro Differentiation of C2C12 MyoblastsMolecular and Cellular Biology, 24
M. Lewandoski, G. Martin (1997)
Cre–mediated chromosome loss in miceNature Genetics, 17
F. Muntoni, T. Voit (2004)
The congenital muscular dystrophies in 2004: a century of exciting progressNeuromuscular Disorders, 14
Asoke Mal, M. Harter (2003)
MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesisProceedings of the National Academy of Sciences of the United States of America, 100
Michael Markey, Steven Angus, Matthew Strobeck, Sarah Williams, Ranjaka Gunawardena, B. Aronow, E. Knudsen (2002)
Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action.Cancer research, 62 22
Mike Huh, M. Parker, A. Scimè, R. Parks, M. Rudnicki (2004)
Rb is required for progression through myogenic differentiation but not maintenance of terminal differentiationThe Journal of Cell Biology, 166
M. Narita, S. Nũnez, E. Heard, M. Narita, Athena Lin, Stephen Hearn, D. Spector, G. Hannon, S. Lowe (2003)
Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular SenescenceCell, 113
Teresa Sullivan, D. Escalante-Alcalde, H. Bhatt, M. Anver, N. Bhat, K. Nagashima, C. Stewart, B. Burke (1999)
Loss of a-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular DystrophyThe Journal of Cell Biology, 147
E. Zacksenhaus, Zhe Jiang, Danie Chung, J. Marth, Robert ips, Brenda Gall (1996)
pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis.Genes & development, 10 23
E. Markiewicz, Maria Ledran, C. Hutchison (2005)
Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitroJournal of Cell Science, 118
Wahyu Raharjo, P. Enarson, Teresa Sullivan, C. Stewart, B. Burke (2001)
Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy.Journal of cell science, 114 Pt 24
J. Lammerding, P. Schulze, Tomosaburo Takahashi, S. Kozlov, Teresa Sullivan, R. Kamm, C. Stewart, Richard Lee (2004)
Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction.The Journal of clinical investigation, 113 3
Arthur Young, G. Longmore (2004)
Differences in stability of repressor complexes at promoters underlie distinct roles for Rb family membersOncogene, 23
H. Polioudaki, Niki Kourmouli, Victoria Drosou, Alexandra Bakou, P. Theodoropoulos, Prim Singh, T. Giannakouros, S. Georgatos (2001)
Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1EMBO reports, 2
V. Sartorelli, P. Puri, P. Puri, Y. Hamamori, V. Ogryzko, Gene Chung, Y. Nakatani, Jean Wang, L. Kedes (1999)
Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program.Molecular cell, 4 5
S. Nielsen, R. Schneider, U. Bauer, Andrew Bannister, Ashby Morrison, D. O’Carroll, R. Firestein, M. Cleary, T. Jenuwein, R. Herrera, T. Kouzarides (2001)
Rb targets histone H3 methylation and HP1 to promotersNature, 412
J. Clin. Invest
P. Zhao, Jinwook Seo, Zuyi Wang, Yue Wang, B. Shneiderman, E. Hoffman (2003)
In vivo filtering of in vitro expression data reveals MyoD targets.Comptes rendus biologies, 326 10-11
M. Bakay, Zuyi Wang, G. Melcon, L. Schiltz, J. Xuan, P. Zhao, V. Sartorelli, Jinwook Seo, E. Pegoraro, C. Angelini, B. Shneiderman, D. Escolar, Yi-Wen Chen, S. Winokur, L. Pachman, Chenguang Fan, R. Mandler, Y. Nevo, E. Gordon, Yitan Zhu, Yibin Dong, Yue Wang, E. Hoffman (2006)
Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration.Brain : a journal of neurology, 129 Pt 4
M. Grattan, C. Kondo, J. Thurston, P. Alakija, B. Burke, C. Stewart, D. Syme, W. Giles (2005)
Skeletal and cardiac muscle defects in a murine model of Emery-Dreifuss muscular dystrophy.Novartis Foundation symposium, 264
B. Burke, C. Stewart (2002)
Life at the edge: the nuclear envelope and human diseaseNature Reviews Molecular Cell Biology, 3
Cédric Laguri, B. Gilquin, Nicolas Wolff, R. Romi-Lebrun, K. Courchay, Isabelle Callebaut, H. Worman, S. Zinn-Justin (2001)
Structural characterization of the LEM motif common to three human inner nuclear membrane proteins.Structure, 9 6
L. Bengtsson, K. Wilson (2004)
Multiple and surprising new functions for emerin, a nuclear membrane protein.Current opinion in cell biology, 16 1
G. Bonne, E. Mercuri, A. Muchir, A. Urtizberea, H. Bécane, D. Récan, L. Merlini, M. Wehnert, R. Boor, U. Reuner, M. Vorgerd, E. Wicklein, B. Eymard, D. Duboc, I. Pénisson‐Besnier, J. Cuisset, X. Ferrer, I. Desguerre, D. Lacombe, K. Bushby, C. Pollitt, D. Toniolo, M. Fardeau, K. Schwartz, F. Muntoni (2000)
Clinical and molecular genetic spectrum of autosomal dominant Emery‐Dreifuss muscular dystrophy due to mutations of the lamin A/C geneAnnals of Neurology, 48
Arthur Young, R. Nagarajan, G. Longmore (2003)
Mechanisms of transcriptional regulation by Rb-E2F segregate by biological pathwayOncogene, 22
G. Lattanzi, A. Ognibene, P. Sabatelli, C. Capanni, M. Columbaro, S. Santi, M. Riccio, L. Merlini, N. Maraldi, S. Squarzoni, D. Toniolo (2000)
Emerin expression at the early stages of myogenic differentiation.Differentiation; research in biological diversity, 66 4-5
(2004)
The Tumor Analysis Best Practices Working Group Expression profiling—Best practices for data generation and interpretations in clinical trials
C. Hutchison (2002)
Lamins: building blocks or regulators of gene expression?Nature Reviews Molecular Cell Biology, 3
E. Black, Erich Huang, H. Dressman, R. Rempel, Nina Laakso, S. Asa, S. Ishida, M. West, J. Nevins (2003)
Distinct gene expression phenotypes of cells lacking Rb and Rb family members.Cancer research, 63 13
G. Bonne, M. Barletta, S. Varnous, H. Bécane, E. Hammouda, L. Merlini, F. Muntoni, C. Greenberg, F. Gary, J. Urtizberea, D. Duboc, M. Fardeau, D. Toniolo, K. Schwartz (1999)
Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophyNature Genetics, 21
P. Puri, P. Puri, S. Iezzi, P. Stiegler, Tung-Ti Chen, R. Schiltz, G. Muscat, A. Giordano, L. Kedes, Jean Wang, V. Sartorelli (2001)
Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis.Molecular cell, 8 4
K. Robertson, S. Ait-Si-Ali, T. Yokochi, P. Wade, Peter Jones, A. Wolffe (2000)
DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promotersNature Genetics, 25
S. Maidment, Juliet Ellis (2002)
Muscular dystrophies, dilated cardiomyopathy, lipodystrophy and neuropathy: the nuclear connectionExpert Reviews in Molecular Medicine, 4
Emery–Dreifuss muscular dystrophy (EDMD1) is caused by mutations in either the X-linked gene emerin (EMD) or the autosomal lamin A/C (LMNA) gene. Here, we describe the derivation of mice lacking emerin in an attempt to derive a mouse model for EDMD1. Although mice lacking emerin show no overt pathology, muscle regeneration in these mice revealed defects. A bioinformatic array analysis of regenerating Emd null muscle revealed abnormalities in cell-cycle parameters and delayed myogenic differentiation, which were associated with perturbations to transcriptional pathways regulated by the retinoblastoma (Rb1) and MyoD genes. Temporal activation of MyoD transcriptional targets was significantly delayed, whereas targets of the Rb1/E2F transcriptional repressor complex remained inappropriately active. The inappropriate modulation of Rb1/MyoD transcriptional targets was associated with up-regulation of Rb1, MyoD and their co-activators/repressors transcripts, suggesting a compensatory effort to overcome a molecular block to differentiation at the myoblast/myotube transition during regeneration. This compensation appeared to be effective for MyoD transcriptional targets, although was less effective for Rb1 targets. Analysis of Rb1 phosphorylation states showed prolonged hyper-phosphorylation at key developmental stages in Emd null myogenic cells, both in vivo and in vitro. We also analyzed the same pathways in Lmna null muscle, which shows extensive dystrophy. Surprisingly, Lmna null muscle did not show the same perturbations to Rb- and MyoD-dependent pathways. We did observe increased transcriptional expression of Lap2α and delayed expression of Rb1, which may regulate alternative transcriptional pathways in the Lmna null myoblasts. We suggest that the dominant LMNA mutations seen in many clinically disparate laminopathies may similarly alter Rb function, with regard to either the timing of exit from the cell cycle or terminal differentiation programs or both.
Human Molecular Genetics – Oxford University Press
Published: Feb 15, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.