Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Berger, Zhi-min Song, Xuebin Li, Xiaosong Wu, Nate Brown, C. Naud, D. Mayou, Tianbo Li, J. Hass, A. Marchenkov, E. Conrad, P. First, W. Heer (2006)
Electronic Confinement and Coherence in Patterned Epitaxial GrapheneScience, 312
J. Venables, G. Spiller, M. Hanbücken (1984)
Nucleation and growth of thin filmsReports on Progress in Physics, 47
R. Gruehn, R. Ross (1988)
High-Resolution Transmission Electron MicroscopyChemInform, 19
T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg (2006)
Controlling the Electronic Structure of Bilayer GrapheneScience, 313
Qingzhong Zhao, M. Nardelli, J. Bernholc (2002)
Ultimate strength of carbon nanotubes: A theoretical studyPhysical Review B, 65
Correspondence and requests for material should be addressed to
DR Nelson (2004)
10.1142/5473
D. Nelson, L. Peliti (1987)
Fluctuations in membranes with crystalline and hexatic orderJournal De Physique, 48
(1934)
Helv. Phys. Acta
Minhei Yu, B. Files, S. Arepalli, R. Ruoff (2000)
Tensile loading of ropes of single wall carbon nanotubes and their mechanical propertiesPhysical review letters, 84 24
S. Stankovich, D. Dikin, G. Dommett, K. Kohlhaas, E. Zimney, E. Stach, R. Piner, S. Nguyen, R. Ruoff (2006)
Graphene-based composite materialsNature, 442
P. Doussal, L. Radzihovsky (1992)
Self-consistent theory of polymerized membranes.Physical review letters, 69 8
M. Zinke–Allmang, Leonard Feldman, M. Grabow (1992)
Clustering on surfacesSurface Science Reports, 16
Lianmao Peng (1999)
ELECTRON ATOMIC SCATTERING FACTORS AND SCATTERING POTENTIALS OF CRYSTALSMicron, 30
J. Evans, P. Thiel, M. Bartelt (2006)
Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D moundsSurface Science Reports, 61
J. Spence (2003)
High-Resolution Electron Microscopy
P. Doyle, P. Turner (1968)
Relativistic Hartree–Fock X‐ray and electron scattering factorsActa Crystallographica Section A, 24
(1937)
Zur Theorie derPhasenumwandlungen II. Phys. 4. Sowjetunion
N. Mermin (1968)
Crystalline Order in Two DimensionsPhysical Review, 176
E. Lifshitz, L. Landau (1958)
statistical-physics-part-1
(1934)
Bemerkungen uber Umwandlungstemperaturen
LD Landau (1937)
Zur Theorie der Phasenumwandlungen IIPhys. Z. Sowjetunion, 11
K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov (2005)
Two-dimensional gas of massless Dirac fermions in grapheneNature, 438
K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov (2004)
Electric Field Effect in Atomically Thin Carbon FilmsScience, 306
D. Nelson, T. Piran, S. Weinberg (2004)
Statistical mechanics of membranes and surfaces
K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A.K. Geim (2005)
Two-dimensional atomic crystals.Proceedings of the National Academy of Sciences of the United States of America, 102 30
S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, L. Ponomarenko, D. Jiang, A.K. Geim (2006)
Strong suppression of weak localization in graphene.Physical review letters, 97 1
Jian Huang, Shuo Chen, Ziqiang Wang, K. Kempa, Yinmin Wang, S. Jo, Gang Chen, M. Dresselhaus, Zhifeng Ren (2006)
Superplastic carbon nanotubesNature, 439
Yuanbo Zhang, Yan-Wen Tan, H. Stormer, P. Kim (2005)
Experimental observation of the quantum Hall effect and Berry's phase in grapheneNature, 438
theoretical study
N. Mermin, H. Wagner (1966)
Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg ModelsPhysical Review Letters, 17
M. Born, K. Huang (1954)
Dynamical Theory of Crystal Lattices
Beamer of FEI for providing access to their in house TEM Titan
S. Horiuchi, Takuya Gotou, M. Fujiwara, R. Sotoaka, M. Hirata, K. Kimoto, T. Asaka, T. Yokosawa, Y. Matsui, Kenji Watanabe, M. Sekita (2003)
Carbon Nanofilm with a New Structure and PropertyJapanese Journal of Applied Physics, 42
RE Peierls (1935)
Quelques proprietes typiques des corpses solidesAnn. Inst. Henri Poincare, 5
DE L’I, P. H., R. Peierls (1935)
Quelques propriétés typiques des corps solides, 5
Graphene — a recently isolated one-atom-thick layered form of graphite — is a hot topic in the materials science and condensed matter physics communities, where it is proving to be a popular model system for investigation. An experiment involving individual graphene sheets suspended over a microscale scaffold has allowed structure determination using transmission electron microscopy and diffraction, perhaps paving the way towards an answer to the question of why graphene can exist at all. The 'two-dimensional' sheets, it seems, are not flat, but wavy. The undulations are less pronounced in a two-layer system, and disappear in multilayer samples. Learning more about this 'waviness' may reveal what makes these extremely thin carbon membranes so stable.
Nature – Springer Journals
Published: Mar 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.