Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Ultrastructural visualization of the internalization of low density lipoprotein by human placental cells

Ultrastructural visualization of the internalization of low density lipoprotein by human... Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNAse dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4° C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37° C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsable for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Histochemistry and Cell Biology Springer Journals

Ultrastructural visualization of the internalization of low density lipoprotein by human placental cells

Loading next page...
 
/lp/springer-journals/ultrastructural-visualization-of-the-internalization-of-low-density-lkqRuynUR3

References (40)

Publisher
Springer Journals
Copyright
Copyright © 1987 by Springer-Verlag
Subject
Biomedicine; Biomedicine, general; Cell Biology; Biochemistry, general; Developmental Biology
ISSN
0948-6143
eISSN
1432-119X
DOI
10.1007/BF00496817
Publisher site
See Article on Publisher Site

Abstract

Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNAse dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4° C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37° C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsable for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta.

Journal

Histochemistry and Cell BiologySpringer Journals

Published: Oct 5, 2004

There are no references for this article.