Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Aggregation-induced emission enhancement in organic ion pairs.

Aggregation-induced emission enhancement in organic ion pairs. We present here a new example of aggregation-induced emission enhancement (AIEE), which involves an original mechanism based on the formation of organic ion pairs. The phenol 4-hydroxy-7-nitrobenzoxadiazole (NBDOH) is dissociated in water at pH 5.0 to give the corresponding phenolate, which is poorly fluorescent in this medium. We bring evidence that fluorescence quenching is due to an interaction with water molecules. In the presence of a relatively bulky ammonium salt, specifically tetrabutylammonium bromide (TBAB), NBDOH forms a hydrophobic salt, TBA(+)NBDO(-). This has no influence on the fluorescence of the anion as long as the salt is dissolved. However, the salt readily crystallizes in the medium and transition to the solid state is accompanied by a strong increase in fluorescence intensity. This effect can be explained by two reasons. The anions are protected from water molecules, and above all, the presence of the bulky cations prevents parallel-stacking of the anions, thus leading to an original molecular arrangement that is favorable to fluorescence. As the nature of the organic cation may be easily changed, the versatility of the system is very interesting for the design of new organic micro- and nanoparticles that must be fluorescent in the solid state, possibly in an aqueous environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Langmuir Pubmed

Aggregation-induced emission enhancement in organic ion pairs.

Langmuir , Volume 26 (12): -10202 – Aug 31, 2010

Aggregation-induced emission enhancement in organic ion pairs.


Abstract

We present here a new example of aggregation-induced emission enhancement (AIEE), which involves an original mechanism based on the formation of organic ion pairs. The phenol 4-hydroxy-7-nitrobenzoxadiazole (NBDOH) is dissociated in water at pH 5.0 to give the corresponding phenolate, which is poorly fluorescent in this medium. We bring evidence that fluorescence quenching is due to an interaction with water molecules. In the presence of a relatively bulky ammonium salt, specifically tetrabutylammonium bromide (TBAB), NBDOH forms a hydrophobic salt, TBA(+)NBDO(-). This has no influence on the fluorescence of the anion as long as the salt is dissolved. However, the salt readily crystallizes in the medium and transition to the solid state is accompanied by a strong increase in fluorescence intensity. This effect can be explained by two reasons. The anions are protected from water molecules, and above all, the presence of the bulky cations prevents parallel-stacking of the anions, thus leading to an original molecular arrangement that is favorable to fluorescence. As the nature of the organic cation may be easily changed, the versatility of the system is very interesting for the design of new organic micro- and nanoparticles that must be fluorescent in the solid state, possibly in an aqueous environment.

 
/lp/pubmed/aggregation-induced-emission-enhancement-in-organic-ion-pairs-lsAIMDZJJa

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0743-7463
DOI
10.1021/la100349d
pmid
20163130

Abstract

We present here a new example of aggregation-induced emission enhancement (AIEE), which involves an original mechanism based on the formation of organic ion pairs. The phenol 4-hydroxy-7-nitrobenzoxadiazole (NBDOH) is dissociated in water at pH 5.0 to give the corresponding phenolate, which is poorly fluorescent in this medium. We bring evidence that fluorescence quenching is due to an interaction with water molecules. In the presence of a relatively bulky ammonium salt, specifically tetrabutylammonium bromide (TBAB), NBDOH forms a hydrophobic salt, TBA(+)NBDO(-). This has no influence on the fluorescence of the anion as long as the salt is dissolved. However, the salt readily crystallizes in the medium and transition to the solid state is accompanied by a strong increase in fluorescence intensity. This effect can be explained by two reasons. The anions are protected from water molecules, and above all, the presence of the bulky cations prevents parallel-stacking of the anions, thus leading to an original molecular arrangement that is favorable to fluorescence. As the nature of the organic cation may be easily changed, the versatility of the system is very interesting for the design of new organic micro- and nanoparticles that must be fluorescent in the solid state, possibly in an aqueous environment.

Journal

LangmuirPubmed

Published: Aug 31, 2010

There are no references for this article.