Access the full text.
Sign up today, get DeepDyve free for 14 days.
Pentao Liu, N. Jenkins, N. Copeland (2003)
A highly efficient recombineering-based method for generating conditional knockout mutations.Genome research, 13 3
K. Jishage, J. Nezu, Y. Kawase, T. Iwata, Miho Watanabe, A. Miyoshi, A. Ose, K. Habu, T. Kake, N. Kamada, O. Ueda, Michiko Kinoshita, D. Jenne, M. Shimane, Hiroshi Suzuki (2002)
Role of Lkb1, the causative gene of Peutz–Jegher's syndrome, in embryogenesis and polyposisProceedings of the National Academy of Sciences of the United States of America, 99
Helen Pearson, Afshan Mccarthy, C. Collins, A. Ashworth, A. Clarke (2008)
Lkb1 deficiency causes prostate neoplasia in the mouse.Cancer research, 68 7
D. Salih, A. Brunet (2008)
FoxO transcription factors in the maintenance of cellular homeostasis during aging.Current opinion in cell biology, 20 2
J. Lee, H. Koh, Myungjin Kim, YongSung Kim, Soo-Young Lee, R. Karess, Sang-Hee Lee, M. Shong, Jin-Man Kim, Jaeseob Kim, Jongkyeong Chung (2007)
Energy-dependent regulation of cell structure by AMP-activated protein kinaseNature, 447
K. Inoki, Tianqing Zhu, K. Guan (2003)
TSC2 Mediates Cellular Energy Response to Control Cell Growth and SurvivalCell, 115
A. Ylikorkala, Derrick Rossi, Nina Korsisaari, K. Luukko, K. Alitalo, M. Henkemeyer, T. Mäkelä (2001)
Vascular Abnormalities and Deregulation of VEGF in Lkb1-Deficient MiceScience, 293
Accalia Fu, A. Ng, C. Depatie, N. Wijesekara, Ying He, Gen‐Sheng Wang, N. Bardeesy, F. Scott, R. Touyz, M. Wheeler, R. Screaton (2009)
Loss of Lkb1 in adult beta cells increases beta cell mass and enhances glucose tolerance in mice.Cell metabolism, 10 4
Dana Gwinn, D. Shackelford, Daniel Egan, M. Mihaylova, A. Méry, Debbie Vasquez, B. Turk, R. Shaw (2008)
AMPK phosphorylation of raptor mediates a metabolic checkpoint.Molecular cell, 30 2
A. Holland, D. Cleveland (2009)
Boveri revisited: chromosomal instability, aneuploidy and tumorigenesisNature Reviews Molecular Cell Biology, 10
D. Alessi, K. Sakamoto, J. Bayascas (2006)
LKB1-dependent signaling pathways.Annual review of biochemistry, 75
R. Shaw, K. Lamia, Debbie Vasquez, S. Koo, N. Bardeesy, R. DePinho, M. Montminy, L. Cantley (2005)
The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of MetforminScience, 310
S. Gurumurthy, A. Hezel, Ergun Sahin, J. Berger, M. Bosenberg, N. Bardeesy (2008)
LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis.Cancer research, 68 1
K. Sakamoto, Elham Zarrinpashneh, G. Budas, A. Pouleur, Anindya Dutta, A. Prescott, J. Vanoverschelde, A. Ashworth, A. Jovanovic, D. Alessi, L. Bertrand (2006)
Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1.American journal of physiology. Endocrinology and metabolism, 290 5
N. Larsson, Jianming Wang, Hans Wilhelmsson, A. Oldfors, P. Rustin, M. Lewandoski, G. Barsh, D. Clayton (1998)
Mitochondrial transcription factor A is necessary for mtDNA maintance and embryogenesis in miceNature Genetics, 18
宮本 佳奈 (2007)
Foxo3a is essential for maintenance of the hematopoietic stem cell pool
Yaroslava Ruzankina, C. Pinzon-Guzman, Amma Asare, Tony Ong, Laura Pontano, G. Cotsarelis, Valerie Zediak, Marielena Velez, A. Bhandoola, E. Brown (2007)
Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss.Cell stem cell, 1 1
C. Cantó, Z. Gerhart-Hines, J. Feige, Marie Lagouge, L. Noriega, J. Milne, P. Elliott, P. Puigserver, J. Auwerx (2009)
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activityNature, 458
E. Greer, Philip Oskoui, M. Banko, Jay Maniar, M. Gygi, S. Gygi, A. Brunet (2007)
The Energy Sensor AMP-activated Protein Kinase Directly Regulates the Mammalian FOXO3 Transcription Factor*Journal of Biological Chemistry, 282
Z. Tothova, R. Kollipara, B. Huntly, Benjamin Lee, Diego Castrillon, Dana Cullen, Elizabeth Mcdowell, S. Lazo-Kallanian, Ifor Williams, C. Sears, Scott Armstrong, E. Passegué, Ronald DePinho, D. Gilliland (2007)
FoxOs Are Critical Mediators of Hematopoietic Stem Cell Resistance to Physiologic Oxidative StressCell, 128
Ömer Yilmaz, R. Valdez, Brian Theisen, Wei Guo, D. Ferguson, Hong Wu, S. Morrison (2006)
Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cellsNature, 441
N. Bardeesy, M. Sinha, A. Hezel, S. Signoretti, Nathaniel Hathaway, N. Sharpless, M. Loda, D. Carrasco, R. DePinho (2002)
Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformationNature, 419
K. Akashi, D. Traver, T. Miyamoto, I. Weissman (2000)
A clonogenic common myeloid progenitor that gives rise to all myeloid lineagesNature, 404
S. Gurumurthy, Stephanie Xie, Brinda Alagesan, Judith Kim, R. Yusuf, B. Saez, A. Tzatsos, Fatih Ozsolak, P. Milos, F. Ferrari, P. Park, O. Shirihai, D. Scadden, N. Bardeesy (2010)
The Lkb1 metabolic sensor maintains haematopoietic stem cell survivalNature, 468
S. Schieke, D. Phillips, J. Mccoy, A. Aponte, Rong‐Fong Shen, R. Balaban, T. Finkel, Cardiology Branch (2006)
The Mammalian Target of Rapamycin (mTOR) Pathway Regulates Mitochondrial Oxygen Consumption and Oxidative Capacity*Journal of Biological Chemistry, 281
MJ Kiel, OH Yilmaz, T Iwashita, C Terhorst, SJ Morrison (2005)
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cellsCell, 121
Péter Tamás, A. Macintyre, D. Finlay, R. Clarke, C. Feijoo-Carnero, A. Ashworth, D. Cantrell (2009)
LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cellsEuropean Journal of Immunology, 40
A. Hezel, S. Gurumurthy, Z. Granot, A. Swisa, Gerald Chu, G. Bailey, Y. Dor, N. Bardeesy, R. DePinho (2008)
Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic NeoplasmsMolecular and Cellular Biology, 28
M. Kiel, Omer Yilmaz, S. Morrison (2008)
CD150- cells are transiently reconstituting multipotent progenitors with little or no stem cell activity.Blood, 111 8
M. Kiel, Ömer Yilmaz, Toshihide Iwashita, Osman Yilmaz, C. Terhorst, Sean Morrison (2005)
Supplemental Data SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells
S. Bonaccorsi, V. Mottier, M. Giansanti, Bonnie Bolkan, B. Williams, M. Goldberg, M. Gatti (2007)
The Drosophila Lkb1 kinase is required for spindle formation and asymmetric neuroblast division, 134
B. Shorning, J. Zabkiewicz, Afshan Mccarthy, Helen Pearson, D. Winton, O. Sansom, A. Ashworth, A. Clarke (2009)
Lkb1 Deficiency Alters Goblet and Paneth Cell Differentiation in the Small IntestinePLoS ONE, 4
Reinhard Kuehn, F. Schwenk, M. Aguet, K. Rajewsky (1995)
Inducible gene targeting in miceScience, 269
D. Shackelford, R. Shaw (2009)
The LKB1–AMPK pathway: metabolism and growth control in tumour suppressionNature Reviews Cancer, 9
Carolyn Rodriguez, F. Buchholz, J. Galloway, Reynaldo Sequerra, J. Kasper, Ramsés Ayala, A. Stewart, S. Dymecki (2000)
High-efficiency deleter mice show that FLPe is an alternative to Cre-loxPNature Genetics, 25
Sophie Martin, D. Johnston (2003)
A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarityNature, 421
C. Contreras, S. Gurumurthy, J. Haynie, Lane Shirley, E. Akbay, S. Wingo, J. Schorge, R. Broaddus, Kwok-kin Wong, N. Bardeesy, D. Castrillon (2008)
Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas.Cancer research, 68 3
Yonghao Cao, Hai Li, Haifeng Liu, Chao-Gu Zheng, H. Ji, Xiaolong Liu (2010)
The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expressionCell Research, 20
Jennifer Watts, D. Morton, Jennifer Bestman, K. Kemphues (2000)
The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry.Development, 127 7
D. Hardie (2007)
AMP-activated/SNF1 protein kinases: conserved guardians of cellular energyNature Reviews Molecular Cell Biology, 8
A. Hemminki, D. Markie, I. Tomlinson, E. Avizienyte, S. Roth, A. Loukola, G. Bignell, W. Warren, M. Aminoff, P. Höglund, H. Järvinen, P. Kristo, K. Pelin, M. Ridanpää, R. Salovaara, T. Toro, W. Bodmer, S. Olschwang, A. Olsen, M. Stratton, A. Chapelle, L. Aaltonen (1998)
A serine/threonine kinase gene defective in Peutz–Jeghers syndromeNature, 391
A. Barnes, Brendan Lilley, Y. Pan, Lisa Plummer, A. Powell, Alexander Raines, J. Sanes, F. Polleux (2007)
LKB1 and SAD Kinases Define a Pathway Required for the Polarization of Cortical NeuronsCell, 129
A Fu (2009)
Loss of Lkb1 in adult β cells increases β cell mass and enhances glucose tolerance in miceCell Metab., 10
Z. Granot, A. Swisa, J. Magenheim, M. Stolovich-Rain, Wakako Fujimoto, E. Manduchi, T. Miki, J. Lennerz, C. Stoeckert, O. Meyuhas, S. Seino, M. Permutt, H. Piwnica-Worms, N. Bardeesy, Y. Dor (2009)
LKB1 regulates pancreatic beta cell size, polarity, and function.Cell metabolism, 10 4
B. Gan, Jian Hu, Shan Jiang, Yingchun Liu, Ergun Sahin, Zhuang Li, Eliot Fletcher-Sananikone, S. Colla, Y. Wang, L. Chin, Ronald DePinho (2010)
LKB1 regulates quiescence and metabolic homeostasis of hematopoietic stem cellsNature, 468
D. Jenne, H. Reimann, J. Nezu, W. Friedel, S. Loff, R. Jeschke, O. Müller, W. Back, M. Zimmer (1998)
Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase.Nature genetics, 18 1
M. Corradetti, K. Inoki, N. Bardeesy, R. DePinho, K. Guan (2004)
Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome.Genes & development, 18 13
Frank Koentgen, G. Süss, C. Stewart, M. Steinmetz, H. Bluethmann (1993)
Targeted disruption of the MHC class II Aa gene in C57BL/6 mice.International immunology, 5 8
K. Sakamoto, Afshan Mccarthy, Darrin Smith, K. Green, D. Hardie, A. Ashworth, D. Alessi (2005)
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contractionThe EMBO Journal, 24
Kotaro Sakamoto, Elham Zarrinpashneh, G. Budas, A. Pouleur, Anindya Dutta, A. Prescott, J. Vanoverschelde, A. Ashworth, A. Jovanovic, D. Alessi, L. Bertrand (2006)
Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPK 2 but not AMPK 1
Little is known about metabolic regulation in stem cells and how this modulates tissue regeneration or tumour suppression. We studied the Lkb1 tumour suppressor and its substrate AMP-activated protein kinase (AMPK), kinases that coordinate metabolism with cell growth. Deletion of the Lkb1 (also called Stk11) gene in mice caused increased haematopoietic stem cell (HSC) division, rapid HSC depletion and pancytopenia. HSCs depended more acutely on Lkb1 for cell-cycle regulation and survival than many other haematopoietic cells. HSC depletion did not depend on mTOR activation or oxidative stress. Lkb1-deficient HSCs, but not myeloid progenitors, had reduced mitochondrial membrane potential and ATP levels. HSCs deficient for two catalytic α-subunits of AMPK (AMPK-deficient HSCs) showed similar changes in mitochondrial function but remained able to reconstitute irradiated mice. Lkb1-deficient HSCs, but not AMPK-deficient HSCs, exhibited defects in centrosomes and mitotic spindles in culture, and became aneuploid. Lkb1 is therefore required for HSC maintenance through AMPK-dependent and AMPK-independent mechanisms, revealing differences in metabolic and cell-cycle regulation between HSCs and some other haematopoietic progenitors.
Nature – Springer Journals
Published: Dec 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.