Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods

Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical... Abstract The subject of graphical methods for data analysis and for data presentation needs a scientific foundation. In this article we take a few steps in the direction of establishing such a foundation. Our approach is based on graphical perception—the visual decoding of information encoded on graphs—and it includes both theory and experimentation to test the theory. The theory deals with a small but important piece of the whole process of graphical perception. The first part is an identification of a set of elementary perceptual tasks that are carried out when people extract quantitative information from graphs. The second part is an ordering of the tasks on the basis of how accurately people perform them. Elements of the theory are tested by experimentation in which subjects record their judgments of the quantitative information on graphs. The experiments validate these elements but also suggest that the set of elementary tasks should be expanded. The theory provides a guideline for graph construction: Graphs should employ elementary tasks as high in the ordering as possible. This principle is applied to a variety of graphs, including bar charts, divided bar charts, pie charts, and statistical maps with shading. The conclusion is that radical surgery on these popular graphs is needed, and as replacements we offer alternative graphical forms—dot charts, dot charts with grouping, and framed-rectangle charts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Statistical Association Taylor & Francis

Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods

Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods

Journal of the American Statistical Association , Volume 79 (387): 24 – Sep 1, 1984

Abstract

Abstract The subject of graphical methods for data analysis and for data presentation needs a scientific foundation. In this article we take a few steps in the direction of establishing such a foundation. Our approach is based on graphical perception—the visual decoding of information encoded on graphs—and it includes both theory and experimentation to test the theory. The theory deals with a small but important piece of the whole process of graphical perception. The first part is an identification of a set of elementary perceptual tasks that are carried out when people extract quantitative information from graphs. The second part is an ordering of the tasks on the basis of how accurately people perform them. Elements of the theory are tested by experimentation in which subjects record their judgments of the quantitative information on graphs. The experiments validate these elements but also suggest that the set of elementary tasks should be expanded. The theory provides a guideline for graph construction: Graphs should employ elementary tasks as high in the ordering as possible. This principle is applied to a variety of graphs, including bar charts, divided bar charts, pie charts, and statistical maps with shading. The conclusion is that radical surgery on these popular graphs is needed, and as replacements we offer alternative graphical forms—dot charts, dot charts with grouping, and framed-rectangle charts.

Loading next page...
 
/lp/taylor-francis/graphical-perception-theory-experimentation-and-application-to-the-m6qYOCIFyp

References (27)

Publisher
Taylor & Francis
Copyright
Copyright Taylor & Francis Group, LLC
ISSN
1537-274X
eISSN
0162-1459
DOI
10.1080/01621459.1984.10478080
Publisher site
See Article on Publisher Site

Abstract

Abstract The subject of graphical methods for data analysis and for data presentation needs a scientific foundation. In this article we take a few steps in the direction of establishing such a foundation. Our approach is based on graphical perception—the visual decoding of information encoded on graphs—and it includes both theory and experimentation to test the theory. The theory deals with a small but important piece of the whole process of graphical perception. The first part is an identification of a set of elementary perceptual tasks that are carried out when people extract quantitative information from graphs. The second part is an ordering of the tasks on the basis of how accurately people perform them. Elements of the theory are tested by experimentation in which subjects record their judgments of the quantitative information on graphs. The experiments validate these elements but also suggest that the set of elementary tasks should be expanded. The theory provides a guideline for graph construction: Graphs should employ elementary tasks as high in the ordering as possible. This principle is applied to a variety of graphs, including bar charts, divided bar charts, pie charts, and statistical maps with shading. The conclusion is that radical surgery on these popular graphs is needed, and as replacements we offer alternative graphical forms—dot charts, dot charts with grouping, and framed-rectangle charts.

Journal

Journal of the American Statistical AssociationTaylor & Francis

Published: Sep 1, 1984

Keywords: Computer graphics; Psychophysics

There are no references for this article.