Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Synthesis of BSA‐Coated BiOI@Bi2S3 Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor

Synthesis of BSA‐Coated BiOI@Bi2S3 Semiconductor Heterojunction Nanoparticles and Their... Developing an effective theranostic nanoplatform remains a great challenge for cancer diagnosis and treatment. Here, BiOI@Bi2S3@BSA (bovine serum albumin) semiconductor heterojunction nanoparticles (SHNPs) for triple‐combination radio/photodynamic/photothermal cancer therapy and multimodal computed tomography/photoacoustic (CT/PA) bioimaging are reported. On the one hand, SHNPs possess strong X‐ray attenuation capability since they contain high‐Z elements, and thus they are anticipated to be a very competent candidate as radio‐sensitizing materials for radiotherapy enhancement. On the other hand, as a semiconductor, the as‐prepared SHNPs offer an extra approach for reactive oxygen species generation based on electron–hole pair under the irradiation of X‐ray through the photodynamic therapy process. This X‐ray excited photodynamic therapy obviously has better penetration depth in bio‐tissue. What's more, the SHNPs also possess well photothermal conversion efficiency for photothermal therapy, because Bi2S3 is a thin band semiconductor with strong near‐infrared absorption that can cause local overheat. In vivo tumor ablation studies show that synergistic radio/photodynamic/photothermal therapy achieves more significant therapeutic effect than any single treatment. In addition, with the strong X‐ray attenuation and high near‐infrared absorption, the as‐obtained SHNPs can also be applied as a multimodal contrast agent in CT/PA imaging. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Wiley

Synthesis of BSA‐Coated BiOI@Bi2S3 Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor

Loading next page...
 
/lp/wiley/synthesis-of-bsa-coated-bioi-bi2s3-semiconductor-heterojunction-miyGPimThc

References (56)

Publisher
Wiley
Copyright
© 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0935-9648
eISSN
1521-4095
DOI
10.1002/adma.201704136
pmid
29035426
Publisher site
See Article on Publisher Site

Abstract

Developing an effective theranostic nanoplatform remains a great challenge for cancer diagnosis and treatment. Here, BiOI@Bi2S3@BSA (bovine serum albumin) semiconductor heterojunction nanoparticles (SHNPs) for triple‐combination radio/photodynamic/photothermal cancer therapy and multimodal computed tomography/photoacoustic (CT/PA) bioimaging are reported. On the one hand, SHNPs possess strong X‐ray attenuation capability since they contain high‐Z elements, and thus they are anticipated to be a very competent candidate as radio‐sensitizing materials for radiotherapy enhancement. On the other hand, as a semiconductor, the as‐prepared SHNPs offer an extra approach for reactive oxygen species generation based on electron–hole pair under the irradiation of X‐ray through the photodynamic therapy process. This X‐ray excited photodynamic therapy obviously has better penetration depth in bio‐tissue. What's more, the SHNPs also possess well photothermal conversion efficiency for photothermal therapy, because Bi2S3 is a thin band semiconductor with strong near‐infrared absorption that can cause local overheat. In vivo tumor ablation studies show that synergistic radio/photodynamic/photothermal therapy achieves more significant therapeutic effect than any single treatment. In addition, with the strong X‐ray attenuation and high near‐infrared absorption, the as‐obtained SHNPs can also be applied as a multimodal contrast agent in CT/PA imaging.

Journal

Advanced MaterialsWiley

Published: Nov 1, 2017

Keywords: ; ; ; ;

There are no references for this article.