Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability

Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their... The study addresses degradation of polyhydroxyalkanoates (PHA) with different chemical compositions—the polymer of 3-hydroxybutyric acid [P(3HB)] and copolymers of P(3HB) with 3-hydroxyvalerate [P(3HB/3HV)], 4-hydroxybutyrate [P(3HB/4HB)], and 3-hydroxyhexanoate [P(3HB/3HHx)] (10–12 mol%)—in the agro-transformed field soil of the temperate zone. Based on their degradation rates at 21 and 28 °C, polymers can be ranked as follows: P(3HB/4HB) > P(3HB/3HHx) > P(3HB/3HV) > P(3HB). The microbial community on the surface of the polymers differs from the microbial community of the soil with PHA specimens in the composition and percentages of species. Thirty-five isolates of bacteria of 16 genera were identified as PHA degraders by the clear zone technique, and each of the PHA had both specific and common degraders. P(3HB) was degraded by bacteria of the genera Mitsuaria, Chitinophaga, and Acidovorax, which were not among the degraders of the three other PHA types. Roseateles depolymerans, Streptomyces gardneri, and Cupriavidus sp. were specific degraders of P(3HB/4HB). Roseomonas massiliae and Delftia acidovorans degraded P(3HB/3HV), and Pseudoxanthomonas sp., Pseudomonas fluorescens, Ensifer adhaerens, and Bacillus pumilus were specific P(3HB/3HHx) degraders. All four PHA types were degraded by Streptomyces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microbial Ecology Springer Journals

Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability

Loading next page...
 
/lp/springer-journals/microbial-degradation-of-polyhydroxyalkanoates-with-different-chemical-nLd2CPTZmV

References (58)

Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Microbiology; Ecology; Microbial Ecology; Geoecology/Natural Processes; Nature Conservation; Water Quality/Water Pollution
ISSN
0095-3628
eISSN
1432-184X
DOI
10.1007/s00248-016-0852-3
pmid
27623963
Publisher site
See Article on Publisher Site

Abstract

The study addresses degradation of polyhydroxyalkanoates (PHA) with different chemical compositions—the polymer of 3-hydroxybutyric acid [P(3HB)] and copolymers of P(3HB) with 3-hydroxyvalerate [P(3HB/3HV)], 4-hydroxybutyrate [P(3HB/4HB)], and 3-hydroxyhexanoate [P(3HB/3HHx)] (10–12 mol%)—in the agro-transformed field soil of the temperate zone. Based on their degradation rates at 21 and 28 °C, polymers can be ranked as follows: P(3HB/4HB) > P(3HB/3HHx) > P(3HB/3HV) > P(3HB). The microbial community on the surface of the polymers differs from the microbial community of the soil with PHA specimens in the composition and percentages of species. Thirty-five isolates of bacteria of 16 genera were identified as PHA degraders by the clear zone technique, and each of the PHA had both specific and common degraders. P(3HB) was degraded by bacteria of the genera Mitsuaria, Chitinophaga, and Acidovorax, which were not among the degraders of the three other PHA types. Roseateles depolymerans, Streptomyces gardneri, and Cupriavidus sp. were specific degraders of P(3HB/4HB). Roseomonas massiliae and Delftia acidovorans degraded P(3HB/3HV), and Pseudoxanthomonas sp., Pseudomonas fluorescens, Ensifer adhaerens, and Bacillus pumilus were specific P(3HB/3HHx) degraders. All four PHA types were degraded by Streptomyces.

Journal

Microbial EcologySpringer Journals

Published: Sep 13, 2016

There are no references for this article.