Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Peterson, J. Workman (2000)
Promoter targeting and chromatin remodeling by the SWI/SNF complex.Current opinion in genetics & development, 10 2
B. Cairns, Young-Joon Kim, M. Sayre, B. Laurent, R. Kornberg (1994)
A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast.Proceedings of the National Academy of Sciences of the United States of America, 91
A. Goffeau, K. Nakai, P. Słomiński, J. Risler (1993)
The membrane proteins encoded by yeast chromosome III genesFEBS Letters, 325
J. Garrels, C. McLaughlin, J. Warner, B. Futcher, G. Latter, R. Kobayashi, B. Schwender, T. Volpe, Damon Anderson, Rodrigo Mesquita‐Fuentes, W. Payne (1997)
Proteome studies of Saccharomyces cerevisiae: Identification and characterization of abundant proteinsELECTROPHORESIS, 18
A. McCormack, D. Schieltz, B. Goode, S. Yang, G. Barnes, and Drubin, Iii†‡ Yates (1997)
Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level.Analytical chemistry, 69 4
P. Klein, M. Kanehisa, C. DeLisi (1985)
The detection and classification of membrane-spanning proteins.Biochimica et biophysica acta, 815 3
H. Mewes, K. Heumann, A. Kaps, K. Mayer, F. Pfeiffer, S. Stocker, D. Frishman (1999)
MIPS: a database for genomes and protein sequencesNucleic acids research, 28 1
M. Oh‐ishi, Mamoru Satoh, T. Maeda (2000)
Preparative two‐dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteinsELECTROPHORESIS, 21
J. Eng, A. McCormack, J. Yates (1994)
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein databaseJournal of the American Society for Mass Spectrometry, 5
A. Link, J. Eng, D. Schieltz, E. Carmack, G. Mize, D. Morris, B. Garvik, J. Yates (1999)
Direct analysis of protein complexes using mass spectrometryNature Biotechnology, 17
C. Toyoshima, M. Nakasako, H. Nomura, H. Ogawa (2000)
Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolutionNature, 405
Qing Liu, X. Leng, P. Newman, E. Vasilyeva, P. Kane, M. Forgac (1997)
Site-directed Mutagenesis of the Yeast V-ATPase A Subunit*The Journal of Biological Chemistry, 272
D. Lockhart, E. Winzeler (2000)
Genomics, gene expression and DNA arraysNature, 405
S. Gygi, Yvan Rochon, B. Franza, R. Aebersold (1999)
Correlation between Protein and mRNA Abundance in YeastMolecular and Cellular Biology, 19
S. Gygi, B. Rist, S. Gerber, F. Tureček, M. Gelb, R. Aebersold (1999)
Quantitative analysis of complex protein mixtures using isotope-coded affinity tagsNature Biotechnology, 17
J. Giddings (1987)
Concepts and comparisons in multidimensional separationHrc-journal of High Resolution Chromatography, 10
William Smith, Jrh (1984)
Current statusDiseases of the Colon & Rectum, 27
S. Kawamoto, Y. Matsumoto, Katsuya Mizuno, K. Okubo, K. Matsubara (1996)
Expression profiles of active genes in human and mouse livers.Gene, 174 1
G. Sprague (1998)
Control of MAP kinase signaling specificity or how not to go HOG wild.Genes & development, 12 18
M. Costanzo, J. Hogan, M. Cusick, B. Davis, Ann Fancher, P. Hodges, P. Kondu, C. Lengieza, J. Lew-Smith, C. Lingner, Kevin Roberg-Perez, M. Tillberg, J. Brooks, J. Garrels (2000)
The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD): comprehensive resources for the organization and comparison of model organism protein informationNucleic acids research, 28 1
S. Gygi, G. Corthals, Yanni Zhang, Yvan Rochon, R. Aebersold (2000)
Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology.Proceedings of the National Academy of Sciences of the United States of America, 97 17
M. Fountoulakis, M. Takacs, B. Takács (1999)
Enrichment of low-copy-number gene products by hydrophobic interaction chromatography.Journal of chromatography. A, 833 2
Bruce Futcher, G. Latter, P. Monardo, Calvin McLaughlin, J. Garrels (1999)
A Sampling of the Yeast ProteomeMolecular and Cellular Biology, 19
V. Hatzimanikatis, Kelvin Lee (1999)
Dynamical analysis of gene networks requires both mRNA and protein expression information.Metabolic engineering, 1 4
Peijun Zhang, C. Toyoshima, K. Yonekura, N. Green, David Stokes (1998)
Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolutionNature, 392
(1989)
Peptide preparation and characterization
A. Pandey, M. Mann (2000)
Proteomics to study genes and genomesNature, 405
M. Auer, G. Scarborough, W. Kühlbrandt (1998)
Three-dimensional map of the plasma membrane H+-ATPase in the open conformationNature, 392
M. Munchbach, M. Quadroni, G. Miotto, P. James (2000)
Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety.Analytical chemistry, 72 17
V. Santoni, M. Molloy, T. Rabilloud (2000)
Membrane proteins and proteomics: Un amour impossible?ELECTROPHORESIS, 21
H. Boucherie, F. Sagliocco, R. Joubert, I. Maillet, Jean Labarre, M. Perrot (1996)
Two‐dimensional gel protein database of Saccharomyces cerevisiaeELECTROPHORESIS, 17
Mark Molloy (2000)
Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients.Analytical biochemistry, 280 1
V. Culotta, L. Klomp, J. Strain, R. Casareno, B. Krems, J. Gitlin (1997)
The Copper Chaperone for Superoxide Dismutase*The Journal of Biological Chemistry, 272
P. Sharp, W. Li (1987)
The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications.Nucleic acids research, 15 3
SP Gygi, GL Corthals, Y Zhang, Y Rochon, R Aebersold (2000)
Evaluation of two-dimensional electrophoresis-based proteome analysisProc. Natl. Acad. Sci. USA, 97
L. Paša-Tolić, P. Jensen, G. Anderson, M. Lipton, Kim Peden, S. Martinović, N. Tolić, J. Bruce, Richard Smith (1999)
High throughput proteome-wide precision measurements of protein expression using mass spectrometryJournal of the American Chemical Society, 121
C. Nilsson, Pia Davidsson (2000)
New separation tools for comprehensive studies of protein expression by mass spectrometry.Mass spectrometry reviews, 19 6
H. Langen, B. Takács, S. Evers, P. Berndt, H. Lahm, B. Wipf, C. Gray, M. Fountoulakis (2000)
Two‐dimensional map of the proteome of Haemophilus influenzaeELECTROPHORESIS, 21
W. Kühlbrandt, M. Auer, G. Scarborough (1998)
Structure of the P-type ATPases.Current opinion in structural biology, 8 4
D. McIntosh (2000)
Portrait of a P-type pumpNature Structural Biology, 7
M. Perrot, F. Sagliocco, T. Mini, C. Monribot, U. Schneider, A. Shevchenko, M. Mann, P. Jenö, H. Boucherie (1999)
Two‐dimensional gel protein database of Saccharomyces cerevisiae (update 1999)ELECTROPHORESIS, 20
V. Hatzimanikatis, L. Choe, Kelvin Lee (1999)
Proteomics: Theoretical and Experimental ConsiderationsBiotechnology Progress, 15
H. Mewes, J. Hani, F. Pfeiffer, D. Frishman (1998)
MIPS: a database for protein sequences and complete genomesNucleic acids research, 26 1
A Aitken, MJ Geisow, JBC Findlay, C Holmes, A Yarwood (1989)
Protein sequencing: a practical approach
M. Washburn, J. Yates (2000)
Analysis of the microbial proteome.Current opinion in microbiology, 3 3
A. Ambesi, M. Miranda, V. Petrov, C. Slayman (2000)
Biogenesis and function of the yeast plasma-membrane H(+)-ATPase.The Journal of experimental biology, 203 Pt 1
M. Fountoulakis, Marie‐Françoise Takács, P. Berndt, H. Langen, B. Takács (1999)
Enrichment of low abundance proteins of Escherichia coli by hydroxyapatite chromatographyELECTROPHORESIS, 20
Y. Oda, K. Huang, F. Cross, D. Cowburn, B. Chait (1999)
Accurate quantitation of protein expression and site-specific phosphorylation.Proceedings of the National Academy of Sciences of the United States of America, 96 12
L. Anderson, J. Seilhamer (1997)
A comparison of selected mRNA and protein abundances in human liverELECTROPHORESIS, 18
S. Hanash (2000)
Biomedical applications of two‐dimensional electrophoresis using immobilized pH gradients: Current statusELECTROPHORESIS, 21
G. Corthals, V. Wasinger, D. Hochstrasser, Jean-Charles Sanchez (2000)
The dynamic range of protein expression: A challenge for proteomic researchELECTROPHORESIS, 21
JC Giddings (1987)
Concepts and comparisons in multidimensional chromatographyJ. High Res. Chromatogr., 10
Bee Lee, E. Elion (1999)
The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components.Proceedings of the National Academy of Sciences of the United States of America, 96 22
E. Jones (1991)
Tackling the protease problem in Saccharomyces cerevisiae.Methods in enzymology, 194
M. Washburn, J. Yates (2000)
New methods of proteome analysis: multidimensional chromatography and mass spectrometryTrends in Biotechnology, 18
M. Molloy, B. Herbert, M. Slade, T. Rabilloud, A. Nouwens, Keith Williams, A. Gooley (2000)
Proteomic analysis of the Escherichia coli outer membrane.European journal of biochemistry, 267 10
A. Shevchenko, O. Jensen, A. Podtelejnikov, F. Sagliocco, M. Wilm, O. Vorm, P. Mortensen, A. Shevchenko, H. Boucherie, M. Mann (1996)
Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels.Proceedings of the National Academy of Sciences of the United States of America, 93 25
C. Gatlin, G. Kleemann, L. Hays, A. Link, J. Yates (1998)
Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry.Analytical biochemistry, 263 1
We describe a largely unbiased method for rapid and large-scale proteome analysis by multidimensional liquid chromatography, tandem mass spectrometry, and database searching by the SEQUEST algorithm, named multidimensional protein identification technology (MudPIT). MudPIT was applied to the proteome of the Saccharomyces cerevisiae strain BJ5460 grown to mid-log phase and yielded the largest proteome analysis to date. A total of 1,484 proteins were detected and identified. Categorization of these hits demonstrated the ability of this technology to detect and identify proteins rarely seen in proteome analysis, including low-abundance proteins like transcription factors and protein kinases. Furthermore, we identified 131 proteins with three or more predicted transmembrane domains, which allowed us to map the soluble domains of many of the integral membrane proteins. MudPIT is useful for proteome analysis and may be specifically applied to integral membrane proteins to obtain detailed biochemical information on this unwieldy class of proteins.
Nature Biotechnology – Springer Journals
Published: Mar 1, 2001
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.