Access the full text.
Sign up today, get DeepDyve free for 14 days.
Muljarov, Tikhodeev, Gippius, Ishihara (1995)
Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds.Physical review. B, Condensed matter, 51 20
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
L. Dou, A. Wong, Yi Yu, Minliang Lai, N. Kornienko, Samuel Eaton, Anthony Fu, Connor Bischak, Jie Ma, Tina Ding, N. Ginsberg, Lin-wang Wang, A. Alivisatos, P. Yang
Materials and Methods Supplementary Text Fig. S1 Reference (35) Database S1 Atomically Thin Two-dimensional Organic-inorganic Hybrid Perovskites
Zhi Guo, Xiaoxi Wu, Tong Zhu, Xiaoyang Zhu, Libai Huang (2016)
Electron-Phonon Scattering in Atomically Thin 2D Perovskites.ACS nano, 10 11
Cherie Kagan, D. Mitzi, C. Dimitrakopoulos (1999)
Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistorsScience, 286 5441
D. Mitzi, K. Chondroudis, Cherie Kagan (2001)
Organic-inorganic electronicsIBM J. Res. Dev., 45
Alberto Fraccarollo, Valentina Cantatore, G. Boschetto, L. Marchese, M. Cossi (2016)
Ab initio modeling of 2D layered organohalide lead perovskites.The Journal of chemical physics, 144 16
N. Kawano, M. Koshimizu, Yan Sun, Natsuna Yahaba, Y. Fujimoto, T. Yanagida, K. Asai (2014)
Effects of Organic Moieties on Luminescence Properties of Organic–Inorganic Layered Perovskite-Type CompoundsJournal of Physical Chemistry C, 118
K. He, Nardeep Kumar, Liang Zhao, Zefang Wang, K. Mak, Hui Zhao, J. Shan (2014)
Tightly bound excitons in monolayer WSe(2).Physical review letters, 113 2
K. Mak, M. Sfeir, Yang Wu, C. Lui, J. Misewich, T. Heinz (2008)
Measurement of the optical conductivity of graphene.Physical review letters, 101 19
Shuang Yang, Wenxin Niu, An‐Liang Wang, Zhanxi Fan, Bo Chen, Chaoliang Tan, Q. Lu, Hua Zhang (2017)
Ultrathin Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability.Angewandte Chemie, 56 15
H. Hill, A. Rigosi, C. Roquelet, A. Chernikov, Timothy Berkelbach, D. Reichman, M. Hybertsen, L. Brus, T. Heinz (2015)
Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy.Nano letters, 15 5
B. Radisavljevic, A. Radenović, J. Brivio, V. Giacometti, A. Kis (2011)
Single-layer MoS2 transistors.Nature nanotechnology, 6 3
O. Yaffe, A. Chernikov, Zachariah Norman, Yu Zhong, A. Velauthapillai, A. Zande, J. Owen, T. Heinz (2015)
Excitons in ultrathin organic-inorganic perovskite crystalsPhysical Review B, 92
Qing Wang, K. Kalantar-zadeh, A. Kis, J. Coleman, M. Strano (2012)
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.Nature nanotechnology, 7 11
T. Ishihara, Jun Takahashi, T. Goto (1990)
Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4.Physical review. B, Condensed matter, 42 17
B. Saparov, D. Mitzi (2016)
Inorganic Perovskites : Structural Versatility for Functional Materials Design
M. Yuan, L. Quan, R. Comin, G. Walters, Randy Sabatini, O. Voznyy, S. Hoogland, Yong‐Biao Zhao, Eric Beauregard, P. Kanjanaboos, Zhenghong Lu, Dong Kim, E. Sargent (2016)
Perovskite energy funnels for efficient light-emitting diodes.Nature nanotechnology, 11 10
X. Hong, Teruya Ishihara, A. Nurmikko (1992)
Dielectric confinement effect on excitons in PbI4-based layered semiconductors.Physical review. B, Condensed matter, 45 12
W. Niu, Lindsey Ibbotson, D. Leipold, E. Runge, G. Prakash, J. Baumberg (2015)
Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductorsPhysical Review B, 91
Weijie Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. Tan, G. Eda (2012)
Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.ACS nano, 7 1
Ziliang Ye, Ting Cao, Kevin O'Brien, Hanyu Zhu, Xiaobo Yin, Y. Wang, S. Louie, Xiang Zhang (2014)
Probing excitonic dark states in single-layer tungsten disulphideNature, 513
T. Low, A. Chaves, J. Caldwell, Anshuman Kumar, N. Fang, P. Avouris, T. Heinz, F. Guinea, L. Martín-Moreno, F. Koppens (2016)
Polaritons in layered two-dimensional materials.Nature materials, 16 2
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
D. Mitzi, C. Feild, W. Harrison, A. Guloy (1994)
Conducting tin halides with a layered organic-based perovskite structureNature, 369
Zhenjun Tan, Yue Wu, Hao Hong, Jianbo Yin, Jincan Zhang, Li Lin, Mingzhan Wang, Xiao Sun, Luzhao Sun, Yucheng Huang, Kaihui Liu, Zhongfan Liu, H. Peng (2016)
Two-Dimensional (C4H9NH3)2PbBr4 Perovskite Crystals for High-Performance Photodetector.Journal of the American Chemical Society, 138 51
M. Trolle, T. Pedersen, V. Véniard (2017)
Model dielectric function for 2D semiconductors including substrate screeningScientific Reports, 7
A. Bréhier, R. Parashkov, J. Lauret, E. Deleporte (2006)
Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductorsApplied Physics Letters, 89
L. Quan, L. Quan, Yong‐Biao Zhao, F. Arquer, Randy Sabatini, G. Walters, O. Voznyy, R. Comin, Yiying Li, James Fan, H. Tan, Jun Pan, M. Yuan, O. Bakr, Zhenghong Lu, Dong Kim, E. Sargent (2017)
Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission.Nano letters, 17 6
K. Gauthron, J. Lauret, L. Doyennette, G. Lanty, A. Choueiry, Sanjun Zhang, A. Bréhier, L. Largeau, O. Mauguin, Jacqueline Bloch, E. Deleporte (2009)
Optical spectroscopy of two-dimensional layered (C(6)H(5)C(2)H(4)-NH(3))(2)-PbI(4) perovskite.Optics express, 18 6
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
T. Fujita, H. Nakashima, M. Hirasawa, T. Ishihara (2000)
Ultrafast photoluminescence from (C6H5C2H4NH3)2PbI4Journal of Luminescence, 87
C. Symonds, J. Bellessa, J. Plenet, A. Bréhier, R. Parashkov, J. Lauret, E. Deleporte (2007)
Emission of hybrid organic-inorganic exciton/plasmon mixed statesApplied Physics Letters, 90
K. Mak, Changgu Lee, J. Hone, J. Shan, T. Heinz (2010)
Atomically thin MoS₂: a new direct-gap semiconductor.Physical review letters, 105 13
C. Stoumpos, D. Cao, D. Clark, Joshua Young, J. Rondinelli, J. Jang, J. Hupp, M. Kanatzidis (2016)
Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous SemiconductorsChemistry of Materials, 28
2D organic–inorganic hybrid perovskites (OIHPs) represent a unique class of materials with a natural quantum‐well structure and quasi‐2D electronic properties. Here, a versatile direct solution‐based synthesis of mono‐ and few‐layer OIHP nanosheets and a systematic study of their electronic structure as a function of the number of monolayers by photoluminescence and absorption spectroscopy are reported. The monolayers of various OIHPs are found to exhibit high electronic quality as evidenced by high quantum yield and negligible Stokes shift. It is shown that the ground exciton peak blueshifts by ≈40 meV when the layer thickness reduces from bulk to monolayer. It is also shown that the exciton binding energy remains effectively unchanged for (C6H5(CH2)2NH3)2PbI4 with the number of layers. Similar trends are observed for (C4H9NH3)2PbI4 in contrast to the previous report. Further, the photoluminescence lifetime is found to decrease with the number of monolayers, indicating the dominant role of surface trap states in nonradiative recombination of the electron–hole pairs.
Advanced Materials – Wiley
Published: Jan 1, 2018
Keywords: ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.