Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Haluzan, S. Davila, A. Antabak (2015)
Thermal Changes During Healing of Distal Radius Fractures‐Preliminary Findings, 46
J. Zuo, J. Jiang, S. H. Chen (2006)
Actin Binding Activity of Subunit B of Vacuolar H + ‐ATPase Is Involved in Its Targeting to Ruffled Membranes of Osteoclasts, 21
H. C. Blair, Q. C. Larrouture, I. L. Tourkova (2018)
Support of Bone Mineral Deposition by Regulation of pH, 315
T. J. Cole, H. Mori (2018)
Fifty Years of Child Height and Weight in Japan and South Korea: Contrasting Secular Trend Patterns Analyzed by SITAR, 30
J. Salo, P. Lehenkari, M. Mulari, K. Metsikkö, H. K. Väänänen (1997)
Removal of Osteoclast Bone Resorption Products by Transcytosis, 276
H. C. Blair, S. L. Teitelbaum, H. L. Tan, C. M. Koziol, P. H. Schlesinger (1991)
Passive Chloride Permeability Charge Coupled to H(+)‐ATPase of Avian Osteoclast Ruffled Membrane, 260
M. Rondanelli, M. A. Faliva, A. Tartara (2021)
An Update on Magnesium and Bone Health, 34
T. Stauber, S. Weinert, T. J. Jentsch (2012)
Cell Biology and Physiology of Clc Chloride Channels and Transporters, 2
M. T. Mazhab‐Jafari, A. Rohou, C. Schmidt (2016)
Atomic Model for the Membrane‐Embedded Vo Motor of a Eukaryotic V‐Atpase, 539
I. L. Tourkova, Q. C. Larrouture, S. Liu (2024)
Chloride/Proton Antiporters ClC3 and ClC5 Support Bone Formation in Mice, 21
B. Wang, Y. Yang, L. Liu, H. C. Blair, P. A. Friedman (2013)
NHERF1 Regulation of PTH‐Dependent Bimodal Pi Transport in Osteoblasts, 52
J. P. Stains, R. Civitelli (2016)
Connexins in the Skeleton, 50
H. C. Blair, Q. C. Larrouture, Y. Li (2017)
Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro, 23
H. C. Blair, Q. C. Larrouture, I. L. Tourkova, D. J. Nelson, S. F. Dobrowolski, P. H. Schlesinger (2023)
Epithelial‐Like Transport of Mineral Distinguishes Bone Formation From Other Connective Tissues, 124
M. P. Whyte (2023)
Carbonic Anhydrase Ii Deficiency, 169
T. Hasegawa, H. Hongo, T. Yamamoto (2022)
Matrix Vesicle‐Mediated Mineralization and Osteocytic Regulation of Bone Mineralization, 23
J. Hou, V. Renigunta, M. Nie (2019)
Phosphorylated claudin‐16 Interacts With Trpv5 and Regulates Transcellular Calcium Transport in the Kidney, 116
A. Forlino, J. C. Marini (2016)
Osteogenesis Imperfecta, 387
A. P. Garneau, S. Slimani, L. Haydock (2022)
Molecular Mechanisms, Physiological Roles, and Therapeutic Implications of Ion Fluxes in Bone Cells: Emphasis on the Cation‐Cl‐Cotransporters, 237
I. L. Tourkova, Q. C. Larrouture, S. Liu, J. Luo, P. H. Schlesinger, H. C. Blair (2024)
The Ecto‐Nucleotide Pyrophosphatase/Phosphodiesterase 2 Promotes Early Osteoblast Differentiation and Mineralization in Stromal Stem Cells, 326
J. B. Peng, Y. Suzuki, G. Gyimesi, M. A. Hediger (2018)
Calcium Entry Channels in Non‐Excitable Cells. Boca Raton (FL)
W. C. Lee, A. R. Guntur, F. Long, C. J. Rosen (2017)
Energy Metabolism of the Osteoblast: Implications for Osteoporosis, 38
Q. C. Larrouture, D. J. Nelson, L. J. Robinson (2015)
Chloride‐Hydrogen Antiporters ClC‐3 and ClC‐5 Drive Osteoblast Mineralization and Regulate Fine‐Structure Bone Patterning In Vitro, 3
F. Szeri, F. Niaziorimi, S. Donnelly (2022)
The Mineralization Regulator ANKH Mediates Cellular Efflux of Atp, Not Pyrophosphate, 37
I. R. Orriss, M. L. Key, M. O. R. Hajjawi, T. R. Arnett (2013)
Extracellular Atp Released by Osteoblasts Is a Key Local Inhibitor of Bone Mineralisation, 8
J. P. Stains, J. A. Weber, C. V. Gay (2002)
Expression of Na(+)/Ca(2 + ) Exchanger Isoforms (NCX1 and NCX3) and Plasma Membrane Ca(2 + ) Atpase During Osteoblast Differentiation, 84
U. Kornak, D. Kasper, M. R. Bösl (2001)
Loss of the ClC‐7 Chloride Channel Leads to Osteopetrosis in Mice and Man, 104
C. McGuire, K. Cotter, L. Stransky, M. Forgac (2016)
Regulation of V‐ATPase Assembly and Function of V‐Atpases in Tumor Cell Invasiveness, 1857
F. Xu, S. L. Teitelbaum (2013)
Osteoclasts: New Insights, 1
Y. Wang, Y. Zhang, W. Yu, M. Dong, P. Cheng, Y. Wang (2024)
Sevoflurane‐Induced Regulation of NKCC1/KCC2 Phosphorylation Through Activation of Spak/OSR1 Kinase and Cognitive Impairment in Ischemia‐Reperfusion Injury in Rats, 10
E. D. Lederer, S. J. Khundmiri, E. J. Weinman (2003)
Role of NHERF‐1 in Regulation of the Activity of Na‐K ATPase and Sodium‐Phosphate Co‐Transport in Epithelial Cells, 14
T. J. Jentsch, M. Pusch (2018)
CIC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease, 98
G. M. Cooper (2000)
The Cell: A Molecular Approach
H. C. Blair, S. L. Teitelbaum, R. Ghiselli, S. Gluck (1989)
Osteoclastic Bone Resorption by a Polarized Vacuolar Proton Pump, 245
L. Liu, P. H. Schlesinger, N. M. Slack, P. A. Friedman, H. C. Blair (2011)
High Capacity Na + /H+ Exchange Activity in Mineralizing Osteoblasts, 226
R. Hua, S. Gu, J. X. Jiang (2022)
Connexin 43 Hemichannels Regulate Osteoblast to Osteocyte Differentiation, 10
Mori H. (2022)
Height Is a Measure of Consumption That Incorporates Nutritional Needs: When and What?Annals of Clinical and Medical Case Reports, 9
V. S. Bystrov, E. V. Paramonova, L. A. Avakyan, N. V. Eremina, S. V. Makarova, N. V. Bulina (2023)
Effect of Magnesium Substitution on Structural Features and Properties of Hydroxyapatite, 16
Y. Nakano, W. N. Addison, M. T. Kaartinen (2007)
ATP‐Mediated Mineralization of MC3T3‐E1 Osteoblast Cultures, 41
F. P. Coxon, A. Taylor (2008)
Vesicular Trafficking in Osteoclasts, 19
Y. Zhou, H. M. Arredondo, N. Wang (2022)
P2Y Receptors in Bone—Anabolic, Catabolic, or Both?, 12
N. Mikolajewicz, E. A. Zimmermann, B. M. Willie, S. V. Komarova (2018)
Mechanically Stimulated Atp Release From Murine Bone Cells Is Regulated by a Balance of Injury and Repair, 7
M. Nakanishi‐Matsui, N. Matsumoto (2022)
V‐ATPase a3 Subunit in Secretory Lysosome Trafficking in Osteoclasts, 45
K. Makris, C. Mousa, E. Cavalier (2023)
Alkaline Phosphatases: Biochemistry, Functions, and Measurement, 112
J. L. Hollander, E. K. Stoner, E. M. Brown, P. deMoor (1951)
Joint Temperature Measurement in the Evaluation of Anti‐Arthritic Agents, 30
A. Inoue, K. Nakao‐Kuroishi, K. Kometani‐Gunjigake (2020)
VNUT/SLC17A9, a Vesicular Nucleotide Transporter, Regulates Osteoblast Differentiation, 10
M. M. McDonald, W. H. Khoo, P. Y. Ng (2021)
Osteoclasts Recycle via Osteomorphs During RANKL‐Stimulated Bone Resorption, 184
P. H. Schlesinger, H. C. Blair, S. L. Teitelbaum, J. C. Edwards (1997)
Characterization of the Osteoclast Ruffled Border Chloride Channel and Its Role in Bone Resorption, 272
H. Madupalli, B. Pavan, M. M. J. Tecklenburg (2017)
Carbonate Substitution in the Mineral Component of Bone: Discriminating the Structural Changes, Simultaneously Imposed by Carbonate in A and B Sites of Apatite, 255
L. I. Plotkin, T. L. Speacht, H. J. Donahue (2015)
Cx43 and Mechanotransduction in Bone, 13
K. Josephsen, J. Praetorius, S. Frische (2009)
Targeted Disruption of the Cl‐/HCO3‐ Exchanger Ae2 Results in Osteopetrosis in Mice, 106
C. Thomas, R. Tampé (2020)
Structural and Mechanistic Principles of Abc Transporters, 89
IntroductionAcid transport is required to support hydroxyapatite synthesis by, osteoblasts, and to mediate hydroxyapatite removal in bone repair or remodeling, by osteoclasts. We do an overview of major phosphate‐producing and acid‐producing transporters for bone production or resorption, with brief indication of context and supporting ion transporters. In subsequent sections, linkage of major cotransport support mechanisms, some in part hypothetical, are discussed in more detail.Osteoblasts import phosphate and Ca2+, and form hydroxyapatite mineral, which produces large amounts of acid:16HPO42−+2H2O+10Ca2+↔Ca10(PO4)6(OH)2+8H+ $6\,HP{{O}_{4}}^{2-}+2\,{H}_{2}O+10C{a}^{2+}\leftrightarrow C{a}_{10}{(P{O}_{4})}_{6}{(OH)}_{2}+8\,{H}^{+}$This requires support by major transport processes that are either directly ATP dependent or dependent on active transport secondarily linked to cellular energy metabolism. Active bone cells are highly metabolically active, and autolyze when isolated, so rapidly that investigators viewing sections of bone are not aware of the epithelioid osteoblast surface mediating transport [1].Briefly, mineralized bone matrix production includes import of phosphate by sodium‐phosphate cotransport by the neutral phosphate transporter‐2 (NPT2) [2], supported by the Na+/K+ ATPase. Glucose and other intermediate substrates are imported to support this transport in osteoblasts; in bone formation phosphate from ATP is exported for hydroxyapatite synthesis. The mechanism is not fully established, but activity requires phosphatase/pyrophosphatase activity major mediators being the tissue‐nonspecific alkaline phosphatase (here,
Journal of Cellular Biochemistry – Wiley
Published: May 1, 2025
Keywords: Bone mineralization; Na+/PO42‐ transport; Osteoblast; Osteoclast; V‐ATPase
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.