Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

2D Zn‐Porphyrin‐Based Co(II)‐MOF with 2‐Methylimidazole Sitting Axially on the Paddle–Wheel Units: An Efficient Electrochemiluminescence Bioassay for SARS‐CoV‐2

2D Zn‐Porphyrin‐Based Co(II)‐MOF with 2‐Methylimidazole Sitting Axially on the Paddle–Wheel... High electrocatalytic activity with tunable luminescence is crucial for the development of electrochemiluminescence (ECL) luminophores. In this study, a porphyrin‐based heterobimetallic 2D metal organic framework (MOF), [(ZnTCPP)Co2(MeIm)] (1), is successfully self‐assembled from the zinc(II) tetrakis(4‐carboxyphenyl)porphine (ZnTCPP) linker and cobalt(II) ions in the presence of 2‐methylimidazole (MeIm) by a facile one‐pot reaction in methanol at room temperature. On the basis of the experimental results and the theoretical calculations, the MOF 1 contains paddle–wheel [Co2(‐CO2)4] secondary building units (SBUs) axially coordinated by a MeIm ligand, which is very beneficial to the electron transfer between the Co(II) ions and oxygen. Combining the photosensitizers ZnTCPP and the electroactive [Co2(‐CO2)4] SBUs, the 2D MOF 1 possesses an excellent ECL performance, and can be used as a novel ECL probe for rapid nonamplified detection of the RdRp gene of SARS‐CoV‐2 with an extremely low limit of detection (≈30 aM). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Functional Materials Wiley

2D Zn‐Porphyrin‐Based Co(II)‐MOF with 2‐Methylimidazole Sitting Axially on the Paddle–Wheel Units: An Efficient Electrochemiluminescence Bioassay for SARS‐CoV‐2

Loading next page...
 
/lp/wiley/2d-zn-porphyrin-based-co-ii-mof-with-2-methylimidazole-sitting-axially-phWFuN1rl1

References (30)

Publisher
Wiley
Copyright
© 2022 Wiley‐VCH GmbH
ISSN
1616-301X
eISSN
1616-3028
DOI
10.1002/adfm.202209743
Publisher site
See Article on Publisher Site

Abstract

High electrocatalytic activity with tunable luminescence is crucial for the development of electrochemiluminescence (ECL) luminophores. In this study, a porphyrin‐based heterobimetallic 2D metal organic framework (MOF), [(ZnTCPP)Co2(MeIm)] (1), is successfully self‐assembled from the zinc(II) tetrakis(4‐carboxyphenyl)porphine (ZnTCPP) linker and cobalt(II) ions in the presence of 2‐methylimidazole (MeIm) by a facile one‐pot reaction in methanol at room temperature. On the basis of the experimental results and the theoretical calculations, the MOF 1 contains paddle–wheel [Co2(‐CO2)4] secondary building units (SBUs) axially coordinated by a MeIm ligand, which is very beneficial to the electron transfer between the Co(II) ions and oxygen. Combining the photosensitizers ZnTCPP and the electroactive [Co2(‐CO2)4] SBUs, the 2D MOF 1 possesses an excellent ECL performance, and can be used as a novel ECL probe for rapid nonamplified detection of the RdRp gene of SARS‐CoV‐2 with an extremely low limit of detection (≈30 aM).

Journal

Advanced Functional MaterialsWiley

Published: Nov 1, 2022

Keywords: axial coordinations; ECL probes; heterobimetallic 2D MOFs; porphyrin; SARS‐CoV‐2

There are no references for this article.