Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Holcombe, R. Paton (1998)
Information Processing in Cells and Tissues
M. Hjortso (1996)
Population balance models of autonomous periodic dynamics in microbial cultures. Their use in process optimizationCanadian Journal of Chemical Engineering, 74
H. Davey, C. Davey, A. Woodward, A. Edmonds, Alvin Lee, D. Kell (1996)
Oscillatory, stochastic and chaotic growth rate fluctuations in permittistatically controlled yeast cultures.Bio Systems, 39 1
P. Spellman, G. Sherlock, Michael Zhang, V. Iyer, Klaus Anders, M. Eisen, P. Brown, D. Botstein, B. Futcher (1998)
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.Molecular biology of the cell, 9 12
J. Villadsen (1999)
On the use of population balancesJournal of Biotechnology, 71
M. Keulers, H. Kuriyama (1998)
Extracellular signaling in an oscillatory yeast culture
F. Kippert (1997)
The ultradian clocks of eukaryotic microbes: timekeeping devices displaying a homeostasis of the period.Chronobiology international, 14 5
H. Sohn, H. Kuriyama (2001)
Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductaseYeast, 18
D. Lloyd, S. Edwards, J. Fry (1982)
Temperature-compensated oscillations in respiration and cellular protein content in synchronous cultures of Acanthamoeba castellanii.Proceedings of the National Academy of Sciences of the United States of America, 79 12
Matthias Beuse, Andreas Kopmann, Hans Diekmann, Manfred Thoma (1999)
Oxygen, pH value, and carbon source induced changes of the mode of oscillation in synchronous continuous culture of Saccharomyces cerevisiae.Biotechnology and bioengineering, 63 4
Jinqing Wang, Weidong Liu, K. Mitsui, K. Tsurugi (2001)
Evidence for the involvement of the GTS1 gene product in the regulation of biological rhythms in the continuous culture of the yeast Saccharomyces cerevisiaeFEBS Letters, 489
M. Keulers, A. Satroutdinov, Takao Suzuki, H. Kuriyama (1996)
Synchronization affector of autonomous short‐period‐sustained oscillation of Saccharomyces cerevisiaeYeast, 12
A. Satroutdinov, H. Kuriyama, Harumi Kobayashi (1992)
Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture.FEMS microbiology letters, 77 1-3
J. Dunlap, J. Loros, Yi Liu, S. Crosthwaite (1999)
Eukaryotic circadian systems: cycles in commonGenes to Cells, 4
C. Kyriacou, J. Hall (1980)
Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song.Proceedings of the National Academy of Sciences of the United States of America, 77 11
S. Yaguchi, K. Mitsui, K. Kawabata, Z. Xu, K. Tsurugi (1996)
The pleiotropic effect of the GTS1 gene product on heat tolerance, sporulation and the life span of Saccharomyces cerevisiae.Biochemical and biophysical research communications, 218 1
F. Kippert, David Lloyd (1995)
A temperature-compensated ultradian clock ticks in Schizosaccharomyces pombe.Microbiology, 141 ( Pt 4)
S. Strogatz (2000)
From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillatorsPhysica D: Nonlinear Phenomena, 143
S. Yaguchi, K. Mitsui, H. Iha, K. Tsurugi (2000)
Phosphorylation of the GTS1 gene product of the yeast Saccharomyces cerevisiae and its effect on heat tolerance and flocculation.FEMS microbiology letters, 187 2
David Lloyd (1998)
Circadian and ultradian clock-controlled rhythms in unicellular microorganisms.Advances in microbial physiology, 39
J. Das, H. Busse (1985)
Long term oscillation in glycolysis.Journal of biochemistry, 97 3
H. Sohn, D. Murray, H. Kuriyama (2000)
Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchronyYeast, 16
Kouichi Iwasaki, Dennis Liu, James Thomas (1995)
Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans.Proceedings of the National Academy of Sciences of the United States of America, 92 22
Hideo Iwasaki, J. Dunlap (2000)
Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks.Current opinion in microbiology, 3 2
P. Ruoff, Merete Vinsjevik, C. Monnerjahn, L. Rensing (1999)
The Goodwin Oscillator: On the Importance of Degradation Reactions in the Circadian ClockJournal of Biological Rhythms, 14
Douglas Murray, F. Engelen, David Lloyd, H. Kuriyama (1999)
Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae.Microbiology, 145 ( Pt 10)
M. Beuse, R. Bartling, A. Kopmann, H. Diekmann, M. Thoma (1998)
Effect of the dilution rate on the mode of oscillation in continuous cultures of Saccharomyces cerevisiae.Journal of biotechnology, 61 1
R. Klevecz (2000)
Dynamic architecture of the yeast cell cycle uncovered by wavelet decomposition of expression microarray dataFunctional & Integrative Genomics, 1
M. Keulers, Takao Suzuki, A. Satroutdinov, H. Kuriyama (1996)
Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol.FEMS microbiology letters, 142 2-3
F. Kippert (1996)
An ultradian clock controls locomotor behaviour and cell division in isolated cells of Paramecium tetraurelia.Journal of cell science, 109 ( Pt 4)
S. Yaguchi, K. Mitsui, K. Tsurugi (1997)
REEXAMINATION OF THE NUCLEOTIDE SEQUENCE OF GTS1, A CANDIDATE CLOCK-RELATED GENE OF SACCHAROMYCES CEREVISIAEBiochemical Archives, 13
C. Hong, J. Tyson (1997)
A proposal for temperature compensation of the circadian rhythm in Drosophila based on dimerization of the per protein.Chronobiology international, 14 5
D. Murray, F. Engelen, M. Keulers, H. Kuriyama, D. Lloyd (1998)
NO+, but not NO⋅, inhibits respiratory oscillations in ethanol‐grown chemostat cultures of Saccharomyces cerevisiaeFEBS Letters, 431
G. Birol, Abdelqader Zamamiri, M. Hjortso (2000)
Frequency analysis of autonomously oscillating yeast culturesProcess Biochemistry, 35
B. Taylor, I. Zhulin (1999)
PAS Domains: Internal Sensors of Oxygen, Redox Potential, and LightMicrobiology and Molecular Biology Reviews, 63
M. Keulers, Tatsuya Asaka, H. Kuriyama (1994)
A versatile data acquisition system for physiological modelling of laboratory fermentation processesBiotechnology Techniques, 8
L. Rensing, S. Mohsenzadeh, P. Ruoff, U. Meyer (1997)
Temperature compensation of the circadian period length--a special case among general homeostatic mechanisms of gene expression?Chronobiology international, 14 5
B. Sweeney, J. Hastings (1960)
Effects of temperature upon diurnal rhythms.Cold Spring Harbor symposia on quantitative biology, 25
C. Pittendrigh (1960)
Circadian rhythms and the circadian organization of living systems.Cold Spring Harbor symposia on quantitative biology, 25
Journal of Bacteriology – Unpaywall
Published: Dec 15, 2001
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.