Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells.

Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem... When cultured in suspension without antidifferentiation factors, embryonic stem (ES) cells spontaneously differentiate and form three-dimensional multicellular aggregates called embryoid bodies (EBs). EBs recapitulate many aspects of cell differentiation during early embryogenesis, and play an important role in the differentiation of ES cells into a variety of cell types in vitro. There are several methods for inducing the formation of EBs from ES cells. The three basic methods are liquid suspension culture in bacterial-grade dishes, culture in methylcellulose semisolid media, and culture in hanging drops. Recently, the methods using a round-bottomed 96-well plate and a conical tube are adopted for forming EBs from predetermined numbers of ES cells. For the production of large numbers of EBs, stirred-suspension culture using spinner flasks and bioreactors is performed. Each of these methods has its own peculiarity; thus, the features of formed EBs depending on the method used. Therefore, we should choose an appropriate method for EB formation according to the objective to be attained. In this review, we summarize the studies on in vitro differentiation of ES cells via EB formation and highlight the EB formation methods recently developed including the techniques, devices, and procedures involved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of bioscience and bioengineering Pubmed

Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells.

Journal of bioscience and bioengineering , Volume 103 (5): 10 – Aug 1, 2007

Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells.


Abstract

When cultured in suspension without antidifferentiation factors, embryonic stem (ES) cells spontaneously differentiate and form three-dimensional multicellular aggregates called embryoid bodies (EBs). EBs recapitulate many aspects of cell differentiation during early embryogenesis, and play an important role in the differentiation of ES cells into a variety of cell types in vitro. There are several methods for inducing the formation of EBs from ES cells. The three basic methods are liquid suspension culture in bacterial-grade dishes, culture in methylcellulose semisolid media, and culture in hanging drops. Recently, the methods using a round-bottomed 96-well plate and a conical tube are adopted for forming EBs from predetermined numbers of ES cells. For the production of large numbers of EBs, stirred-suspension culture using spinner flasks and bioreactors is performed. Each of these methods has its own peculiarity; thus, the features of formed EBs depending on the method used. Therefore, we should choose an appropriate method for EB formation according to the objective to be attained. In this review, we summarize the studies on in vitro differentiation of ES cells via EB formation and highlight the EB formation methods recently developed including the techniques, devices, and procedures involved.

Loading next page...
 
/lp/pubmed/methods-for-inducing-embryoid-body-formation-in-vitro-differentiation-q70Ae0YmzM

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1389-1723
DOI
10.1263/jbb.103.389
pmid
17609152

Abstract

When cultured in suspension without antidifferentiation factors, embryonic stem (ES) cells spontaneously differentiate and form three-dimensional multicellular aggregates called embryoid bodies (EBs). EBs recapitulate many aspects of cell differentiation during early embryogenesis, and play an important role in the differentiation of ES cells into a variety of cell types in vitro. There are several methods for inducing the formation of EBs from ES cells. The three basic methods are liquid suspension culture in bacterial-grade dishes, culture in methylcellulose semisolid media, and culture in hanging drops. Recently, the methods using a round-bottomed 96-well plate and a conical tube are adopted for forming EBs from predetermined numbers of ES cells. For the production of large numbers of EBs, stirred-suspension culture using spinner flasks and bioreactors is performed. Each of these methods has its own peculiarity; thus, the features of formed EBs depending on the method used. Therefore, we should choose an appropriate method for EB formation according to the objective to be attained. In this review, we summarize the studies on in vitro differentiation of ES cells via EB formation and highlight the EB formation methods recently developed including the techniques, devices, and procedures involved.

Journal

Journal of bioscience and bioengineeringPubmed

Published: Aug 1, 2007

References