Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Perry, V. Yong, Masatoshi Ito, J. Foulks, R. Wall, D. Godin, R. Clavier (1984)
Nigrostriatal Dopaminergic Neurons Remain Undamaged in Rats Given High Doses of l‐DOPA and Carbidopa ChronicallyJournal of Neurochemistry, 43
S. Fahn, G. Cohen (1992)
The oxidant stress hypothesis in Parkinson's disease: Evidence supporting itAnnals of Neurology, 32
A. Schapira, J. Cooper, D. Dexter, P. Jenner, J. Clark, C. Marsden (1989)
MITOCHONDRIAL COMPLEX I DEFICIENCY IN PARKINSON'S DISEASEThe Lancet, 333
J. Connor, S. Menzies, S. Martin, E. Mufson (1992)
A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brainsJournal of Neuroscience Research, 31
P. Anglade, S. Vyas, F. Javoy‐Agid, M. Herrero, P. Michel, J. Marquez, A. Mouatt‐Prigent, M. Ruberg, E. Hirsch, Y. Agid (1997)
Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease.Histology and histopathology, 12 1
Ambani Lm, Van Mh, S. Murphy (1975)
Brain peroxidase and catalase in Parkinson disease.Archives of neurology, 32 2
K. McNaught, P. Jenner (2000)
Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation.Biochemical pharmacology, 60 7
M. Spina, G. Cohen (1988)
Exposure of striatal [corrected] synaptosomes to L-dopa increases levels of oxidized glutathione.The Journal of pharmacology and experimental therapeutics, 247 2
W. Ying, Mary Sevigny, Yongmei Chen, R. Swanson (2001)
Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal deathProceedings of the National Academy of Sciences of the United States of America, 98
H. Li, Xue-Ming Shen, G. Dryhurst (1998)
Brain Mitochondria Catalyze the Oxidation of 7‐(2‐Aminoethyl)‐3,4‐Dihydro‐5‐Hydroxy‐2H‐1,4‐Benzothiazine‐3‐Carboxylic Acid (DHBT‐1) to Intermediates that Irreversibly Inhibit Complex I and Scavenge Glutathione: Potential Relevance to the Pathogenesis of Parkinson's DiseaseJournal of Neurochemistry, 71
D. Cassarino, C. Fall, R. Swerdlow, Trisha Smith, Erik Halvorsen, Scott Miller, Janice Parks, W. Parker, J. Bennett (1997)
Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease.Biochimica et biophysica acta, 1362 1
Trisha Smith, P. Trimmer, Shaharyar Khan, D. Tinklepaugh, J. Bennett (1997)
Mitochondrial toxins in models of neurodegenerative diseases. II: elevated zif268 transcription and independent temporal regulation of striatal D1 and D2 receptor mRNAs and D1 and D2 receptor-binding sites in C57BL/6 mice during MPTP treatmentBrain Research, 765
Olanow Olanow, Tatton Tatton (1999)
Etiology and pathogenesis of Parkinson's diseaseAnnu Rev Neurosci, 22
Z. Alam, S. Daniel, A. Lees, D. Marsden, P. Jenner, B. Halliwell (1997)
A Generalised Increase in Protein Carbonyls in the Brain in Parkinson's but Not Incidental Lewy Body DiseaseJournal of Neurochemistry, 69
J. Barker, S. Heales, A. Cassidy, J. Bolaños, J. Land, J. Clark (1996)
Depletion of brain glutathione results in a decrease of glutathione reductase activity; an enzyme susceptible to oxidative damageBrain Research, 716
P. Morrish, J. Rakshi, D. Bailey, G. Sawle, D. Brooks (1998)
Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PETJournal of Neurology, Neurosurgery & Psychiatry, 64
Fahn Fahn (1997)
Levodopa‐induced neurotoxicity. Does it represent a problem for the treatment of Parkinson's disease?CNS Drugs, 8
K. McNaught, P. Jenner (1999)
Altered Glial Function Causes Neuronal Death and Increases Neuronal Susceptibility to 1‐Methyl‐4‐Phenylpyridinium‐ and 6‐Hydroxydopamine‐Induced Toxicity in Astrocytic/Ventral Mesencephalic Co‐CulturesJournal of Neurochemistry, 73
MD Beal (1998)
Excitotoxicity and nitric oxide in parkinson's disease pathogenesisAnnals of Neurology, 44
Makoto Tanaka, A. Sotomatsu, H. Kanai, S. Hirai (1991)
Dopa and dopamine cause cultured neuronal death in the presence of ironJournal of the Neurological Sciences, 101
A. Radunović, W. Pôrto, S. Zeman, P. Leigh (1997)
Increased mitochondrial superoxide dismutase activity in Parkinson's disease but not amyotrophic lateral sclerosis motor cortexNeuroscience Letters, 239
M. Kuiper, C. Mulder, G. Kamp, P. Scheltens, Wolters Ec (1994)
Cerebrospinal fluid ferritin levels of patients with Parkinson's disease, Alzheimer's disease, and multiple system atrophyJournal of Neural Transmission - Parkinson's Disease and Dementia Section, 7
S. Fahn (1997)
Levodopa-Induced NeurotoxicityCNS Drugs, 8
Weiner Weiner (2000)
Is levodopa toxic?Arch Neurol, 57
N. Tatton (2000)
Increased Caspase 3 and Bax Immunoreactivity Accompany Nuclear GAPDH Translocation and Neuronal Apoptosis in Parkinson's DiseaseExperimental Neurology, 166
E. Floor, M. Wetzel (1998)
Increased Protein Oxidation in Human Substantia Nigra Pars Compacta in Comparison with Basal Ganglia and Prefrontal Cortex Measured with an Improved Dinitrophenylhydrazine AssayJournal of Neurochemistry, 70
Christopher Morris, J. Edwardson (1994)
Iron histochemistry of the substantia nigra in Parkinson's disease.Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration, 3 4
F. Hefti, E. Melamed, J. Bhawan, R. Wurtman (1981)
Long‐term administration of L‐DOPA does not damage dopaminergic neurons in the mouseNeurology, 31
S. Hunot, F. Boissiere, B. Faucheux, B. Brugg, A. Mouatt‐Prigent, Y. Agid, E. Hirsch (1996)
Nitric oxide synthase and neuronal vulnerability in parkinson's diseaseNeuroscience, 72
J. Greene, J. Greenamyre (1996)
Bioenergetics and excitotoxicity: The weak excitotoxic hypothesis
D. Dexter, A. Holley, W. Flitter, T. Slater, F. Wells, S. Daniel, A. Lees, P. Jenner, C. Marsden (1994)
Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR studyMovement Disorders, 9
George Veech, J. Dennis, P. Keeney, C. Fall, R. Swerdlow, W. Parker, J. Bennett (2000)
Disrupted mitochondrial electron transport function increases expression of anti‐apoptotic Bcl‐2 and Bcl‐XL proteins in SH‐SY5Y neuroblastoma and in Parkinson disease cybrid cells through oxidative stressJournal of Neuroscience Research, 61
PhD Dexter, BSc Sian, PhD Rose, BSc Hindmarsh, PhD” Mann, PhD Cooper, MAOxon Wells, MRCPath Daniel, Frcp Lees, MD Schapira, DSc Jenner, Frs Marsden (1994)
Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body diseaseAnnals of Neurology, 35
D. Reif, R. Simmons (1990)
Nitric oxide mediates iron release from ferritin.Archives of biochemistry and biophysics, 283 2
PhD” Mann, PhD Cooper, FRCPath Daniel, PhD Srai, DSc Jenner, Frs Marsden, MD Schapira, Prof Schapira (1994)
Complex I, Iron, and ferritin in Parkinson's disease substantia nigraAnnals of Neurology, 36
E. Sofić, K. Lange, K. Jellinger, P. Riederer (1992)
Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's diseaseNeuroscience Letters, 142
PhD Jenner, M. Olanow, Peter Jenner, Pharmacology Group (1998)
Understanding cell death in parkinson's diseaseAnnals of Neurology, 44
He‐Jin Lee, S. Shin, C. Choi, Young Lee, Seung-Jae Lee (2002)
Formation and Removal of α-Synuclein Aggregates in Cells Exposed to Mitochondrial Inhibitors*The Journal of Biological Chemistry, 277
G. Liberatore, V. Jackson-Lewis, S. Vukosavić, A. Mandir, M. Vila, W. Mcauliffe, V. Dawson, T. Dawson, S. Przedborski (1999)
Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson diseaseNature Medicine, 5
N. Quinn, D. Parkes, I. Janota, C. Marsden, Prof. Marsden (1986)
Preservation of the substanitia nigra and locus coeruleus in a patient receiving levodopa (2 kg) plus decarboxylase inhibitor over a four‐year periodMovement Disorders, 1
Early stage apoptotic cascade of neuronal cells overexpressing wild type or mutant ␣-synuclein: the mechanism of neurodegeneration in Parkinson's disease
S. Camandola, G. Poli, M. Mattson (2000)
The Lipid Peroxidation Product 4‐Hydroxy‐2,3‐Nonenal Increases AP‐1‐Binding Activity Through Caspase Activation in NeuronsJournal of Neurochemistry, 74
S. Przedborski, V. Kostić, V. Jackson-Lewis, AB Naini, S. Simonetti, S. Fahn, E. Carlson, CJ Epstein, JL Cadet (1992)
Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity, 12
N. Ogawa, R. Edamatsu, K. Mizukawa, M. Asanuma, M. Kohno, A. Mori (1993)
Degeneration of dopaminergic neurons and free radicals. Possible participation of levodopa.Advances in neurology, 60
Olanow Olanow (1992)
Magnetic resonance imaging in parkinsonismNeurol Clin, 10
Ken Nakamura, V. Bindokas, J. Marks, David Wright, David Frim, Richard Miller, Un Kang (2000)
The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons: the role of mitochondrial complex I and reactive oxygen species revisited.Molecular pharmacology, 58 2
J. Byun, J. Henderson, D. Mueller, J. Heinecke (1999)
8-Nitro-2'-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human phagocytes.Biochemistry, 38 8
Gerald, Cohen, Richard Heikkila (1974)
The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents.The Journal of biological chemistry, 249 8
M. Mena, M. Casarejos, A. Carazo, C. Paíno, J. Yébenes (1996)
Glia conditioned medium protects fetal rat midbrain neurones in culture from L‐DOPA toxicityNeuroReport, 7
P. Jenner (1994)
Oxidative damage in neurodegenerative diseaseThe Lancet, 344
C. Mytilineou, Shan‐Kuo Han, G. Cohen (1993)
Toxic and Protective Effects of l‐DOPA on Mesencephalic Cell CulturesJournal of Neurochemistry, 61
Moonhee Lee, D. Hyun, P. Jenner, B. Halliwell (2001)
Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide productionJournal of Neurochemistry, 78
Lotharius Lotharius, O'Malley O'Malley (2000)
The parkinsonism‐inducing drug 1‐methyl‐4‐phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicityJ Biol Chem, 275
Trisha Smith, J. Bennett (1997)
Mitochondrial toxins in models of neurodegenerative diseases. I: in vivo brain hydroxyl radical production during sytemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ionsBrain Research, 765
Liu (2000)
10.1242/jcs.113.4.635J Cell Sci, 113
R. Pearce, A. Owen, S. Daniel, P. Jenner, C. Marsden (2005)
Alterations in the distribution of glutathione in the substantia nigra in Parkinson's diseaseJournal of Neural Transmission, 104
D. Tse, R. McCreery, R. Adams (1976)
Potential oxidative pathways of brain catecholamines.Journal of medicinal chemistry, 19 1
Schapira (1990)
10.1111/j.1471-4159.1990.tb02325.xJ Neurochem, 54
P. Piccini, D. Burn, R. Ceravolo, D. Maraganore, D. Brooks (1999)
The role of inheritance in sporadic Parkinson's disease: Evidence from a longitudinal study of dopaminergic function in twinsAnnals of Neurology, 45
B. Halliwell (1992)
Reactive Oxygen Species and the Central Nervous SystemJournal of Neurochemistry, 59
E. Sofić, P. Riederer, H. Heinsen, Helmut Beckmann, G. Reynolds, G. Hebenstreit, M. Youdim (2005)
Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brainJournal of Neural Transmission, 74
E. Clementi, G. Brown, M. Feelisch, S. Moncada (1998)
Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione.Proceedings of the National Academy of Sciences of the United States of America, 95 13
H. Mochizuki, K. Goto, H. Mori, Y. Mizuno (1996)
Histochemical detection of apoptosis in Parkinson's diseaseJournal of the Neurological Sciences, 137
DSc Jenner, PhD Dexter, BSc Sian, MD Schapira, C. Marsden, Deborah Jenner (1992)
Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental lewy body diseaseAnnals of Neurology, 32
P. Good, A. Hsu, P. Werner, D. Perl, C. Olanow (1998)
Protein Nitration in Parkinson's DiseaseJournal of Neuropathology and Experimental Neurology, 57
J. Coyle, P. Puttfarcken (1993)
Oxidative stress, glutamate, and neurodegenerative disorders.Science, 262 5134
栄治 長谷川 (1993)
1-methyl-4-phenylpyridinium (MPP[+]) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles
P. Damier, E. Hirsch, P. Zhang, Y. Agid, F. Javoy‐Agid (1993)
Glutathione peroxidase, glial cells and Parkinson's diseaseNeuroscience, 52
H. Ikeda, C. Markey, S. Markey (1992)
Search for neurotoxins structurally related to 1-methyl-4-phenylpyridine (MPP+) in the pathogenesis of Parkinson's diseaseBrain Research, 575
Olanow (1992)
10.1016/S0733-8619(18)30218-4Neurol Clin, 10
R. Banati, S. Daniel, S. Blunt (1998)
Glial pathology but absence of apoptotic nigral neurons in long‐standing Parkinson's diseaseMovement Disorders, 13
N. Ogawa (1994)
Levodopa and dopamine agonists in the treatment of Parkinson's disease: advantages and disadvantages.European neurology, 34 Suppl 3
(1994)
A marker of oxyradical-mediated DNA damage (8-hydroxy-2 deoxyguanosine) is increased in nidro-striatum of Parkinson’s disease brain
Neng-neng Cheng, T. Maeda, T. Kume, S. Kaneko, H. Kochiyama, A. Akaike, Y. Goshima, Y. Misu (1996)
Differential neurotoxicity induced by l-DOPA and dopamine in cultured striatal neuronsBrain Research, 743
C. Cosi, F. Colpaert, W. Koek, A. Degryse, M. Marien (1996)
Poly(ADP-ribose) polymerase inhibitors protect against MPTP-induced depletions of striatal dopamine and cortical noradrenaline in C57B1/6 miceBrain Research, 729
José Souza, Irene Choi, Qiping Chen, Marie Weisse, Evgueni Daikhin, Marc Yudkoff, Martin Obin, Jahan Ara, Joel Horwitz, H. Ischiropoulos (2000)
Proteolytic degradation of tyrosine nitrated proteins.Archives of biochemistry and biophysics, 380 2
(1996)
Iron and neurodegeneration: prospects for neuroprotection
S. Pennathur, V. Jackson-Lewis, S. Przedborski, J. Heinecke (1999)
Mass Spectrometric Quantification of 3-Nitrotyrosine, ortho-Tyrosine, and o,o′-Dityrosine in Brain Tissue of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated Mice, a Model of Oxidative Stress in Parkinson's Disease*The Journal of Biological Chemistry, 274
L. Valberg, P. Flanagan, A. Kertesz, G. Ebers (1989)
Abnormalities in Iron Metabolism in Multiple SclerosisCanadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, 16
Yongmei Chen, N. Vartiainen, W. Ying, P. Chan, J. Koistinaho, R. Swanson (2001)
Astrocytes protect neurons from nitric oxide toxicity by a glutathione‐dependent mechanismJournal of Neurochemistry, 77
D. Riley (1998)
Is levodopa toxic to human substantia nigra?Movement disorders : official journal of the Movement Disorder Society, 13 2
J. Beckman, Tanya Beckman, Jun Chen, P. Marshall, B. Freeman (1990)
Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proceedings of the National Academy of Sciences of the United States of America, 87
K. Mithöfer, M. Sandy, M. Smith, D. Monte (1992)
Mitochondrial poisons cause depletion of reduced glutathione in isolated hepatocytes.Archives of biochemistry and biophysics, 295 1
Eiji Hasegawa, K. Takeshige, Tomonari Oishi, Yoshiyuki Murai, Shigeki Minakami (1990)
1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles.Biochemical and biophysical research communications, 170 3
John Duda, Benoit Giasson, Qiping Chen, Tamar Gur, H. Hurtig, Matthew Stern, Steve Gollomp, H. Ischiropoulos, V. Lee, J. Trojanowski (2000)
Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies.The American journal of pathology, 157 5
I. Ziv, R. Zilkha-Falb, D. Offen, A. Shirvan, A. Barzilai, E. Melamed (1997)
Levodopa induces apoptosis in cultured neuronal cells—A possible accelerator of nigrostriatal degeneration in Parkinson's disease?Movement Disorders, 12
J. Bolaños, Á. Almeida, V. Stewart, Stephan Peuchen, J. Land, J. Clark, S. Heales (1997)
Nitric Oxide‐Mediated Mitochondrial Damage in the Brain: Mechanisms and Implications for Neurodegenerative DiseasesJournal of Neurochemistry, 68
Jeremy Spencer, M. Whiteman, P. Jenner, B. Halliwell (2002)
5‐S‐Cysteinyl‐conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase‐3 activity in neuronsJournal of Neurochemistry, 81
P. Good, C. Olanow, D. Perl (1992)
Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson's disease: a LAMMA studyBrain Research, 593
K. McNaught, K. McNaught, C. Olanow, B. Halliwell, O. Isacson, P. Jenner (2001)
Failure of the ubiquitin–proteasome system in Parkinson's diseaseNature Reviews Neuroscience, 2
Gibb Gibb, Lees Lees (1988)
The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's diseaseJ Neurol Neurosurg Psychiatry, 51
H. Sawada, M. Ibi, T. Kihara, M. Urushitani, A. Akaike, J. Kimura, S. Shimohama (1998)
Dopamine D2‐type agonists protect mesencephalic neurons from glutamate neurotoxicity: Mechanisms of neuroprotective treatment against oxidative stressAnnals of Neurology, 44
PhD Hirsch, PhD Hunot, Faucheux PhD, Dr Hirsch (1998)
Glial cells and inflammation in parkinson's disease: A role in neurodegeneration?Annals of Neurology, 44
S. Kish, Caryl Morito, O. Hornykiewicz (1985)
Glutathione peroxidase activity in Parkinson's disease brainNeuroscience Letters, 58
R. Adams, E. Murrill, R. McCreery, L. Blank, M. Karolczak (1972)
6-Hydroxydopamine, a new oxidation mechanism.European journal of pharmacology, 17 2
T. Perry, D. Godin, S. Hansen (1982)
Parkinson's disease: A disorder due to nigral glutathione deficiency?Neuroscience Letters, 33
Rajput (1997)
10.1002/mds.870120503Mov Disord, 12
G. Mackenzie, M. Jackson, P. Jenner, C. Marsden (1997)
Nitric oxide synthase inhibition and MPTP‐induced toxicity in the common marmosetSynapse, 26
D. Dexter, A. Carayon, M. Vidailhet, M. Ruberg, F. Agid, Y. Agid, A. Lees, F. Wells, P. Jenner, C. Marsden (1990)
Decreased Ferritin Levels in Brain in Parkinson's DiseaseJournal of Neurochemistry, 55
P. Lestienne, J. Nelson, P. Riederer, K. Jellinger, H. Reichmann (1990)
Normal Mitochondrial Genome in Brain from Patients with Parkinson's Disease and Complex I DefectJournal of Neurochemistry, 55
M. Clément, L. Long, J. Ramalingam, B. Halliwell (2002)
The cytotoxicity of dopamine may be an artefact of cell cultureJournal of Neurochemistry, 81
Moonhee Lee, D. Hyun, B. Halliwell, P. Jenner (2001)
Effect of the overexpression of wild‐type or mutant α‐synuclein on cell susceptibility to insultJournal of Neurochemistry, 76
E. Mukai, N. Makino, K. Fujishiro (1989)
[Magnetic resonance imaging of parkinsonism].Rinsho shinkeigaku = Clinical neurology, 29 6
J. Spencer, P. Jenner, S. Daniel, A. Lees, D. Marsden, B. Halliwell (1998)
Conjugates of Catecholamines with Cysteine and GSH in Parkinson's Disease: Possible Mechanisms of Formation Involving Reactive Oxygen SpeciesJournal of Neurochemistry, 71
D. Dexter, F. Wells, A. Lees, F. Agid, Y. Agid, P. Jenner, C. Marsden (1989)
Increased Nigral Iron Content and Alterations in Other Metal Ions Occurring in Brain in Parkinson's DiseaseJournal of Neurochemistry, 52
N. Ogawa, M. Asanuma, Y. Kondo, Y. Kawada, Mitsutoshi Yamamoto, A. Mori (1994)
Differential effects of chronic l-DOPA treatment on lipid peroxidation in the mouse brain with or without pretreatment with 6-hydroxydopamineNeuroscience Letters, 171
L. Lyras, B. Zeng, G. Mckenzie, R. Pearce, B. Halliwell, P. Jenner (2002)
Chronic high dose L-DOPA alone or in combination with the COMT inhibitor entacapone does not increase oxidative damage or impair the function of the nigro-striatal pathway in normal cynomologus monkeysJournal of Neural Transmission, 109
(2002)
The REAL PET Study: slower progression in early Parkinson's disease treated with ropinirole compound with L-dopa (Abstract S11.006). Presented at
A. Schapira (2004)
Evidence for mitochondrial dysfunction in Parkinson's disease—a critical appraisalMovement Disorders, 9
J. Schulz, R. Matthews, M. Muqit, S. Browne, M. Beal (1995)
Inhibition of Neuronal Nitric Oxide Synthase by 7‐Nitroindazole Protects Against MPTP‐Induced Neurotoxicity in MiceJournal of Neurochemistry, 64
K. Hoyt, I. Reynolds, T. Hastings (1997)
Mechanisms of Dopamine-Induced Cell Death in Cultured Rat Forebrain Neurons: Interactions with and Differences from Glutamate-Induced Cell DeathExperimental Neurology, 143
P. Jenner, A. Schapira, C. Marsden (1992)
New insights into the cause of Parkinson's diseaseNeurology, 42
J. Jahngen-Hodge, M. Obin, Xin Gong, F. Shang, T. Nowell, Junxian Gong, Hajiya Abasi, J. Blumberg, A. Taylor (1997)
Regulation of Ubiquitin-conjugating Enzymes by Glutathione Following Oxidative Stress*The Journal of Biological Chemistry, 272
D. Dexter, C. Carter, F. Wells, F. Javoy‐Agid, Y. Agid, A. Lees, P. Jenner, C. Marsden (1989)
Basal Lipid Peroxidation in Substantia Nigra Is Increased in Parkinson's DiseaseJournal of Neurochemistry, 52
J. Zhang, George Perry, M. Smith, D. Robertson, S. Olson, D. Graham, T. Montine (1999)
Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons.The American journal of pathology, 154 5
Jeswinder Sian, D. Dexter, A. Lees, S. Daniel, Y. Agid, F. Javoy‐Agid, P. Jenner, C. Marsden (1994)
Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal gangliaAnnals of Neurology, 36
MD Rodriguez, MD Obeso, MD Olanow, Str GPe, GPi Thalamus (1998)
Subthalamic nucleus‐mediated excitotoxicity in parkinson's disease: A target for neuroprotectionAnnals of Neurology, 44
Olanow (1996)
10.1016/B978-012525445-8/50006-0
R. Ferrante, P. Hantraye, E. Brouillet, M. Beal (1999)
Increased nitrotyrosine immunoreactivity in substantia nigra neurons in MPTP treated baboons is blocked by inhibition of neuronal nitric oxide synthaseBrain Research, 823
Wei Liu, M. Kato, A. Akhand, A. Hayakawa, H. Suzuki, T. Miyata, K. Kurokawa, Y. Hotta, N. Ishikawa, I. Nakashima (2000)
4-hydroxynonenal induces a cellular redox status-related activation of the caspase cascade for apoptotic cell death.Journal of cell science, 113 ( Pt 4)
Yelena Glinka, Moussa Youdim (1995)
Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine.European journal of pharmacology, 292 3-4
D. Ben-Shachar, Roza Zuk, Y. Glinka (1995)
Dopamine Neurotoxicity: Inhibition of Mitochondrial RespirationJournal of Neurochemistry, 64
F. Cabrera‐Valdivia, F. Jiménez-Jiménez, J. Molina, P. Fernández-Calle, A. Vázquez, Francisca Cañizares-Liébana, Sagrario Larumbe-Lobalde, L. Ayuso-Peralta, M. Rabasa, R. Codoceo (1994)
Peripheral iron metabolism in patients with Parkinson's diseaseJournal of the Neurological Sciences, 125
P. Riederer, E. Sofić, W. Rausch, B. Schmidt, G. Reynolds, K. Jellinger, M. Youdim (1989)
Transition Metals, Ferritin, Glutathione, and Ascorbic Acid in Parkinsonian BrainsJournal of Neurochemistry, 52
N. Tatton, A. Maclean-Fraser, W. Tatton, D. Perl, C. Warren (1998)
A fluorescent double‐labeling method to detect and confirm apoptotic nuclei in parkinson's diseaseAnnals of Neurology, 44
M. Picklo, V. Amarnath, J. Mcintyre, D. Graham, T. Montine (1999)
4‐Hydroxy‐2(E)‐Nonenal Inhibits CNS Mitochondrial Respiration at Multiple SitesJournal of Neurochemistry, 72
M. Ibi, H. Sawada, T. Kume, H. Katsuki, S. Kaneko, S. Shimohama, A. Akaike (1999)
Depletion of Intracellular Glutathione Increases Susceptibility to Nitric Oxide in Mesencephalic Dopaminergic NeuronsJournal of Neurochemistry, 73
K. Okada, Chantima Wangpoengtrakul, T. Osawa, S. Toyokuni, Keiji Tanaka, K. Uchida (1999)
4-Hydroxy-2-nonenal-mediated Impairment of Intracellular Proteolysis during Oxidative StressThe Journal of Biological Chemistry, 274
K. McNaught, P. Jenner (2000)
Dysfunction of rat forebrain astrocytes in culture alters cytokine and neurotrophic factor releaseNeuroscience Letters, 285
E. Hirsch, J. Brandel, P. Gallé, F. Javoy‐Agid, Y. Agid (1991)
Iron and Aluminum Increase in the Substantia Nigra of Patients with Parkinson's Disease: An X‐Ray MicroanalysisJournal of Neurochemistry, 56
Y. Mizuno, S. Ohta, Masashi Tanaka, S. Takamiya, Keiji Suzuki, Takeshi Sato, H. Oya, T. Ozawa, Y. Kagawa (1989)
Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease.Biochemical and biophysical research communications, 163 3
D. Graham (1978)
Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Molecular pharmacology, 14 4
B. Giasson, J. Duda, I. Murray, Qiping Chen, J. Souza, H. Hurtig, H. Ischiropoulos, J. Trojanowski, V. Lee (2000)
Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions.Science, 290 5493
P. Jenner, P. Jenner (1991)
Oxidative stress as a cause of Parkinson's diseaseActa Neurologica Scandinavica, 84
D. Dexter, A. Carayon, F. Javoy‐Agid, Y. Agid, F. Wells, S. Daniel, A. Lees, P. Jenner, C. Marsden (1991)
Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia.Brain : a journal of neurology, 114 ( Pt 4)
J. Lotharius, K. O’Malley (2000)
The Parkinsonism-inducing Drug 1-Methyl-4-phenylpyridinium Triggers Intracellular Dopamine OxidationThe Journal of Biological Chemistry, 275
A. Hartley, J. Cooper, A. Schapira (1993)
Iron induced oxidative stress and mitochondrial dysfunction: relevance to Parkinson's diseaseBrain Research, 627
D. Hyun, M. Lee, B. Halliwell, P. Jenner (2002)
Proteasomal dysfunction induced by 4‐hydroxy‐2,3‐trans‐nonenal, an end‐product of lipid peroxidation: a mechanism contributing to neurodegeneration?Journal of Neurochemistry, 83
J. Connor, B. Snyder, P. Arosio, D. Loeffler, P. LeWitt (1995)
A Quantitative Analysis of Isoferritins in Select Regions of Aged, Parkinsonian, and Alzheimer's Diseased BrainsJournal of Neurochemistry, 65
E. Yoshida, K. Mokuno, S. Aoki, A. Takahashi, S. Riku, T. Murayama, Tsutomu Yanagi, Kanefusa Kato (1994)
Cerebrospinal fluid levels of superoxide dismutases in neurological diseases detected by sensitive enzyme immunoassaysJournal of the Neurological Sciences, 124
S. Kösel, R. Egensperger, U. Eitzen, P. Mehraein, M. Graeber (1997)
On the question of apoptosis in the parkinsonian substantia nigraActa Neuropathologica, 93
A. Yoritaka, N. Hattori, K. Uchida, Masashi Tanaka, E. Stadtman, Y. Mizuno (1996)
Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease.Proceedings of the National Academy of Sciences of the United States of America, 93 7
MPhil Gngsbury, DSc Mardsen, Oliver, PhD Foster, A. Kingsbury (1998)
DNA fragmentation in human substantia nigra: Apoptosis or perimortem effect?Movement Disorders, 13
R. Marttila, H. Lorentz, U. Rinne (1988)
Oxygen toxicity protecting enzymes in Parkinson's disease Increase of superoxide dismutase-like activity in the substantia nigra and basal nucleusJournal of the Neurological Sciences, 86
S. Przedborski, V. Jackson-Lewis, Rina Yokoyama, T. Shibata, V. Dawson, T. Dawson (1996)
Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity.Proceedings of the National Academy of Sciences of the United States of America, 93 10
T. Yoshikawa (1993)
Free radicals and their scavengers in Parkinson's disease.European neurology, 33 Suppl 1
BSc Sian, PhD Dexter, Frcp Lees, MRCPath Daniel, DSc Jenner, Frs Marsden, Deborah Jenner, Biomembrane Group, Manresa London, Road (1994)
Glutathione‐related enzymes in brain in Parkinson's diseaseAnnals of Neurology, 36
T. Müller, H. Hefter, R. Hueber, W. Jost, K. Leenders, P. Odin, J. Schwarz (2004)
Is levodopa toxic?Journal of Neurology, 251
P. Hantraye, E. Brouillet, R. Ferrante, S. Palfi, R. Dolan, R. Matthews, M. Beal (1996)
Inhibition of neuronal nitric oxide synthase prevents MPTP–induced parkinsonism in baboonsNature Medicine, 2
A. Yoritaka, N. Hattori, H. Mori, Kanefusa Kato, Y. Mizuno (1997)
An immunohistochemical study on manganese superoxide dismutase in Parkinson's diseaseJournal of the Neurological Sciences, 148
Weiner (2000)
10.1001/archneur.57.3.408Arch Neurol, 57
J. Cooper, S. Daniel, C. Marsden, A. Schapira (1995)
L‐Dihydroxyphenylalanine and complex I deficiency in Parkinson's disease brainMovement Disorders, 10
Okada Okada, Wangpoengtrakul Wangpoengtrakul, Osawa Osawa (1999)
4‐Hydroxy‐2‐nonenal‐mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target moleculesJ Biol Chem, 274
Y. Mizuno, S. Ikebe, N. Hattori, Y. Nakagawa‐Hattori, H. Mochizuki, Masashi Tanaka, T. Ozawa (1995)
Role of mitochondria in the etiology and pathogenesis of Parkinson's disease.Biochimica et biophysica acta, 1271 1
J. Masserano, L. Gong, H. Kulaga, I. Baker, R. Wyatt (1996)
Dopamine induces apoptotic cell death of a catecholaminergic cell line derived from the central nervous system.Molecular pharmacology, 50 5
H. Saggu, J. Cooksey, D. Dexter, F. Wells, A. Lees, P. Jenner, C. Marsden (1989)
A Selective Increase in Particulate Superoxide Dismutase Activity in Parkinsonian Substantia NigraJournal of Neurochemistry, 53
M. Lee, D. Hyun, B. Halliwell, P. Jenner (2001)
Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult.Journal of neurochemistry, 76 4
A. Mandir, S. Przedborski, V. Jackson-Lewis, Zhao-Qi Wang, C. Simbulan-Rosenthal, M. Smulson, Brian Hoffman, D. Guastella, V. Dawson, T. Dawson (1999)
Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism.Proceedings of the National Academy of Sciences of the United States of America, 96 10
M. Mena, Viviana Davila, D. Sulzer (1997)
Neurotrophic Effects of l‐DOPA in Postnatal Midbrain Dopamine Neuron/Cortical Astrocyte CoculturesJournal of Neurochemistry, 69
D. Hyun, Moonhee Lee, N. Hattori, S. Kubo, Y. Mizuno, B. Halliwell, P. Jenner (2002)
Effect of Wild-type or Mutant Parkin on Oxidative Damage, Nitric Oxide, Antioxidant Defenses, and the Proteasome*The Journal of Biological Chemistry, 277
S. Harik (1990)
Magnetic Resonance Imaging in Multiple SclerosisNeurology, 40
Shan‐Kuo Han, C. Mytilineou, G. Cohen (1996)
l‐DOPA Up‐Regulates Glutathione and Protects Mesencephalic Cultures Against Oxidative StressJournal of Neurochemistry, 66
J. Bolaños, S. Heales, S. Peuchen, J. Barker, J. Land, J. Clark (1996)
Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione.Free radical biology & medicine, 21 7
Z. Alam, A. Jenner, S. Daniel, A. Lees, Nigel Cairns, C. Marsden, P. Jenner, B. Halliwell (1997)
Oxidative DNA Damage in the Parkinsonian Brain: An Apparent Selective Increase in 8‐Hydroxyguanine Levels in Substantia NigraJournal of Neurochemistry, 69
F. Dagani, R. Ferrari, J. Anderson, T. Chase (1991)
L‐dopa does not affect electron transfer chain enzymes and respiration of rat muscle mitochondriaMovement Disorders, 6
K. Earle (1968)
Studies on Parkinson's disease including x-ray fluorescent spectroscopy of formalin fixed brain tissue.Journal of neuropathology and experimental neurology, 27 1
M. Iravani, K. Kashefi, P. Mander, S. Rose, Peter Jenner (2002)
Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegenerationNeuroscience, 110
Thomas Reinheckel, N. Sitte, Oliver Ullrich, Ulrike Kuckelkorn, Kelvin Davies, Tilman Grune (1998)
Comparative resistance of the 20S and 26S proteasome to oxidative stress.The Biochemical journal, 335 ( Pt 3)
P. Jenner (1993)
Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson's diseaseActa Neurologica Scandinavica, 87
P. Johannsen, G. Velander, J. Mai, B. Thorling, E. Dupont, Dr Johannsen (1991)
Glutathione peroxidase in early and advanced Parkinson's disease.Journal of Neurology, Neurosurgery & Psychiatry, 54
Moussa Youdim, D. Ben-Shachar, Peter Riederer (1989)
Is Parkinson's disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration?Acta Neurologica Scandinavica, 80
K. Jellinger, W. Paulus, I. Grundke‐Iqbal, P. Riederer, M. Youdim (1990)
Brain iron and ferritin in Parkinson's and Alzheimer's diseasesJournal of Neural Transmission - Parkinson's Disease and Dementia Section, 2
Csaba Szabó, B. Zingarelli, M. O’connor, A. Salzman (1996)
DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite.Proceedings of the National Academy of Sciences of the United States of America, 93 5
Gibb (1988)
10.1136/jnnp.51.6.745J Neurol Neurosurg Psychiatry, 51
L. Shulman (2000)
Levodopa toxicity in Parkinson disease: reality or myth? Reality--practice patterns should change.Archives of neurology, 57 3
P. Mcgeer, S. Itagaki, E. Mcgeer (2004)
Expression of the histocompatibility glycoprotein HLA-DR in neurological diseaseActa Neuropathologica, 76
Xue-Ming Shen, G. Dryhurst (1996)
Further insights into the influence of L-cysteine on the oxidation chemistry of dopamine: reaction pathways of potential relevance to Parkinson's disease.Chemical research in toxicology, 9 4
Angélica Castaño, A. Herrera, J. Cano, A. Machado (1998)
Lipopolysaccharide Intranigral Injection Induces Inflammatory Reaction and Damage in Nigrostriatal Dopaminergic SystemJournal of Neurochemistry, 70
J. Spencer, P. Jenner, B. Halliwell (1995)
Superoxide‐dependent depletion of reduced glutathione by L‐DOPA and dopamine. Relevance to Parkinson's diseaseNeuroReport, 6
X. Shen, H. Li, G. Dryhurst (2000)
Oxidative metabolites of 5-S-cysteinyldopamine inhibit the α-ketoglutarate dehydrogenase complex: possible relevance to the pathogenesis of Parkinson's diseaseJournal of Neural Transmission, 107
K. McNaught, P. Jenner (2001)
Proteasomal function is impaired in substantia nigra in Parkinson's diseaseNeuroscience Letters, 297
R. Monie, A. Hunter, K. Rocchiccioli, J. White, I. Campbell, G. Kilpatrick, S. Glamorgan, Cf Lxx, David Davies
Occasional Review
G. Logroscino, Karen Marder, J. Graziano, Greg Freyer, V. Slavkovich, N. LoIacono, L. Cote, R. Mayeux (1997)
Altered systemic iron metabolism in Parkinson's diseaseNeurology, 49
Olanow (1999)
10.1146/annurev.neuro.22.1.123Annu Rev Neurosci, 22
Oxidative stress contributes to the cascade leading to dopamine cell degeneration in Parkinson's disease (PD). However, oxidative stress is intimately linked to other components of the degenerative process, such as mitochondrial dysfunction, excitotoxicity, nitric oxide toxicity and inflammation. It is therefore difficult to determine whether oxidative stress leads to, or is a consequence of, these events. Oxidative damage to lipids, proteins, and DNA occurs in PD, and toxic products of oxidative damage, such as 4‐hydroxynonenal (HNE), can react with proteins to impair cell viability. There is convincing evidence for the involvement of nitric oxide that reacts with superoxide to produce peroxynitrite and ultimately hydroxyl radical production. Recently, altered ubiquitination and degradation of proteins have been implicated as key to dopaminergic cell death in PD. Oxidative stress can impair these processes directly, and products of oxidative damage, such as HNE, can damage the 26S proteasome. Furthermore, impairment of proteasomal function leads to free radical generation and oxidative stress. Oxidative stress occurs in idiopathic PD and products of oxidative damage interfere with cellular function, but these form only part of a cascade, and it is not possible to separate them from other events involved in dopaminergic cell death. Ann Neurol 2003;53 (suppl 3):S26–S38
Annals of Neurology – Wiley
Published: Jan 1, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.