Access the full text.
Sign up today, get DeepDyve free for 14 days.
H. Dunn, L. Peter (2009)
How Efficient Is Electron Collection in Dye-Sensitized Solar Cells? Comparison of Different Dynamic Methods for the Determination of the Electron Diffusion LengthJournal of Physical Chemistry C, 113
Chia‐Yuan Chen, Shi-jhang Wu, Chun‐Guey Wu, Jian-Ging Chen, K. Ho (2006)
A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells.Angewandte Chemie, 45 35
M. Nazeeruddin, P. Péchy, T. Renouard, S. Zakeeruddin, R. Humphry‐Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, Glen Deacon, C. Bignozzi, Michael Gra (2001)
Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells.Journal of the American Chemical Society, 123 8
H. Snaith, A. Moulé, C. Klein, K. Meerholz, R. Friend, M. Grätzel (2007)
Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture.Nano letters, 7 11
A. Abbotto, C. Barolo, Luca Bellotto, F. Angelis, M. Grätzel, N. Manfredi, Chiara Marinzi, S. Fantacci, Jun‐Ho Yum, M. Nazeeruddin (2008)
Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells.Chemical communications, 42
Mingkui Wang, Peter Chen, R. Humphry‐Baker, S. Zakeeruddin, M. Grätzel (2009)
The influence of charge transport and recombination on the performance of dye-sensitized solar cells.Chemphyschem : a European journal of chemical physics and physical chemistry, 10 1
Farah Matar, T. Ghaddar, Kate Walley, Tracy DosSantos, J. Durrant, B. O'Regan (2008)
A new ruthenium polypyridyl dye, TG6, whose performance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye to beat’ for 17 yearsJournal of Materials Chemistry, 18
N. Duffy, L. Peter, R. Rajapakse, K. Wijayantha (2000)
A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cellsElectrochemistry Communications, 2
Feifei Gao, Yuane Wang, Dong Shi, J. Zhang, Mingkui Wang, Xiao-Ling Jing, R. Humphry‐Baker, Peng Wang, S. Zakeeruddin, M. Grätzel (2008)
Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells.Journal of the American Chemical Society, 130 32
U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel (1998)
Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficienciesNature, 395
Y. Chiba, A. Islam, Yuki Watanabe, Ryoichi Komiya, N. Koide, Liyuan Han (2006)
Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%Japanese Journal of Applied Physics, 45
Chia‐Yuan Chen, Mingkui Wang, Jheng-Ying Li, N. Pootrakulchote, L. Alibabaei, Cevey-Ha Ngoc-le, Jean-David Décoppet, Jia-Hung Tsai, C. Grätzel, Chun‐Guey Wu, S. Zakeeruddin, M. Grätzel (2009)
Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells.ACS nano, 3 10
Chia‐Yuan Chen, Jian-Ging Chen, Shi-jhang Wu, Jheng-Ying Li, Chun‐Guey Wu, K. Ho (2008)
Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells.Angewandte Chemie, 47 38
N. Papageorgiou, M. Grätzel, P. Infelta (1996)
On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cellsSolar Energy Materials and Solar Cells, 44
J. Bisquert, D. Cahen, G. Hodes, and Rühle, A. Zaban (2004)
Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar CellsJournal of Physical Chemistry B, 108
Mingkui Wang, Xin Li, Hong Lin, P. Péchy, S. Zakeeruddin, M. Grätzel (2009)
Passivation of nanocrystalline TiO2 junctions by surface adsorbed phosphinate amphiphiles enhances the photovoltaic performance of dye sensitized solar cells.Dalton transactions, 45
M. Nazeeruddin, F. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel (2005)
Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers.Journal of the American Chemical Society, 127 48
Mingkui Wang, Mingfei Xu, Dong Shi, Renzhi Li, Feifei Gao, Guangliang Zhang, Z. Yi, R. Humphry‐Baker, Peng Wang, S. Zakeeruddin, M. Grätzel (2008)
High‐Performance Liquid and Solid Dye‐Sensitized Solar Cells Based on a Novel Metal‐Free Organic SensitizerAdvanced Materials, 20
J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, U. Bach (2001)
High efficiency solid-state photovoltaic device due to inhibition of interface charge recombinationApplied Physics Letters, 79
B. O'Regan, M. Grätzel (1991)
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 filmsNature, 353
N. Robertson (2006)
Optimizing dyes for dye-sensitized solar cells.Angewandte Chemie, 45 15
B. O'Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling, J. Durrant (2006)
Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films.The journal of physical chemistry. B, 110 34
Arvind Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner (1999)
Photovoltaic technology: the case for thin-film solar cellsScience, 285 5428
C. Brabec, N. Sariciftci, J. Hummelen (2001)
Plastic Solar CellsAdvanced Functional Materials, 11
P. Würfel, U. Würfel (2009)
Physics of solar cells : from basic principles to advanced concepts
Feifei Gao, Yuanjun Wang, J. Zhang, Dong Shi, Mingkui Wang, R. Humphry‐Baker, Peng Wang, S. Zakeeruddin, M. Graetzel (2008)
A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell.Chemical communications, 23
F. Fabregat‐Santiago, J. Bisquert, L. Cevey, Peter Chen, Mingkui Wang, S. Zakeeruddin, M. Grätzel (2009)
Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor.Journal of the American Chemical Society, 131 2
R. Mane, Jinho Chang, D. Ham, B. Pawar, T. Ganesh, B. Cho, Joong-Kee Lee, Sung-Hwan Han (2009)
Dye-sensitized solar cell and electrochemical supercapacitor applications of electrochemically deposited hydrophilic and nanocrystalline tin oxide film electrodesCurrent Applied Physics, 9
C.‐Y. Chen, S.-J. Wu, J. Li, C.‐G. Wu, J.‐G. Chen, K. Ho (2007)
A New Route to Enhance the Light‐Harvesting Capability of Ruthenium Complexes for Dye‐Sensitized Solar CellsAdvanced Materials, 19
J. Bisquert, V. Vikhrenko (2004)
Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar CellsJournal of Physical Chemistry B, 108
R. Crandall (1983)
Modeling of thin film solar cells: Uniform field approximationJournal of Applied Physics, 54
B. O'Regan, Kate Walley, Mindaugas Juozapavicius, Assaf Anderson, Farah Matar, T. Ghaddar, S. Zakeeruddin, C. Klein, J. Durrant (2009)
Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage.Journal of the American Chemical Society, 131 10
M. Grätzel (2006)
The advent of mesoscopic injection solar cellsProgress in Photovoltaics: Research and Applications, 14
S. Huang, G. Schlichthorl, A. Nozik, M. Grätzel, A. Frank (1997)
CHARGE RECOMBINATION IN DYE-SENSITIZED NANOCRYSTALLINE TIO2 SOLAR CELLSJournal of Physical Chemistry B, 101
J. Bisquert, I. Mora‐Seró (2010)
Simulation of Steady-State Characteristics of Dye- Sensitized Solar Cells and the Interpretation of the Diffusion LengthJournal of Physical Chemistry Letters, 1
L. Schmidt‐Mende, U. Bach, R. Humphry‐Baker, Tamotsu Horiuchi, H. Miura, S. Ito, Satoshi Uchida, M. Grätzel (2005)
Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar CellsAdvanced Materials, 17
A. Luque, S. Hegedus (2011)
Handbook of photovoltaic science and engineering
Mingkui Wang, S. Moon, Mingfei Xu, Kethineni Chittibabu, Peng Wang, Ngoc-Lê Cevey-Ha, R. Humphry‐Baker, S. Zakeeruddin, M. Grätzel (2010)
Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer.Small, 6 2
Mingkui Wang, C. Grätzel, S. Moon, R. Humphry‐Baker, Nathalie Rossier-Iten, S. Zakeeruddin, M. Grätzel (2009)
Surface Design in Solid‐State Dye Sensitized Solar Cells: Effects of Zwitterionic Co‐adsorbents on Photovoltaic PerformanceAdvanced Functional Materials, 19
L. Peter (2007)
Dye-sensitized nanocrystalline solar cells.Physical chemistry chemical physics : PCCP, 9 21
L. Peter (2009)
"Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.Accounts of chemical research, 42 11
B. O'Regan, J. Durrant (2009)
Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real.Accounts of chemical research, 42 11
N. Koumura, Zhong‐Sheng Wang, S. Mori, M. Miyashita, E. Suzuki, K. Hara (2006)
Alkyl-functionalized organic dyes for efficient molecular photovoltaics.Journal of the American Chemical Society, 128 44
J. Villanueva-Cab, Hongxia Wang, G. Oskam, L. Peter (2010)
Electron Diffusion and Back Reaction in Dye-Sensitized Solar Cells: The Effect of Nonlinear Recombination KineticsJournal of Physical Chemistry Letters, 1
J. Xue, Barry Rand, S. Uchida, S. Forrest (2005)
Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performanceJournal of Applied Physics, 98
A ruthenium sensitizer (coded C101, NaRu (4,4′‐bis(5‐hexylthiophen‐2‐yl)‐2,2′‐bipyridine) (4‐carboxylic acid‐4′‐caboxylate‐2,2′‐bipyridine) (NCS)2) containing a hexylthiophene‐conjugated bipyridyl group as an ancillary ligand is presented for use in solid‐state dye‐sensitized solar cells (SSDSCs). The high molar‐extinction coefficient of this dye is advantageous compared to the widely used Z907 dye, (NaRu (4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridine) (NCS)2). In combination with an organic hole‐transporting material (spiro‐MeOTAD, 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine) 9, 9′‐spirobifluorene), the C101 sensitizer exhibits an excellent power‐conversion efficiency of 4.5% under AM 1.5 solar (100 mW cm−2) irradiation in a SSDSC. From electronic‐absorption, transient‐photovoltage‐decay, and impedance measurements it is inferred that extending the π‐conjugation of spectator ligands induces an enhanced light harvesting and retards the charge recombination, thus favoring the photovoltaic performance of a SSDSC.
Advanced Functional Materials – Wiley
Published: Jun 9, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.