Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Humicola insolens cutinase-catalyzed lactone ring-opening polymerizations: kinetic and mechanistic studies.

Humicola insolens cutinase-catalyzed lactone ring-opening polymerizations: kinetic and... This paper explores reaction kinetics and mechanism for immobilized Humicola insolenscutinase (HIC), an important new biocatalyst that efficiently catalyzes non-natural polyester synthetic reactions. HIC, immobilized on Lewatit, was used as catalyst for epsilon-caprolactone (CL) and omega-pentadecalactone (PDL) ring-opening polymerizations (ROPs). Plots of percent CL conversion vs time were obtained in the temperature range from 50 to 90 degrees C. The kinetic plot of ln([M]0/[M]t) vs time (r2 = 0.99) for HIC-catalyzed bulk ROP of CL was linear, indicating that chain termination did not occur and the propagation rate is first order with respect to monomer concentration. Furthermore, linearity to 90% conversion for M(n) vs fractional CL conversion is consistent with a chain-end propagation mechanism. Deviation from linearity above 90% conversion indicates that a competition between ring-opening chain-end propagation and chain growth by steplike polycondensations takes place at high monomer conversion. HIC was inactive for catalysis of L-lactide and (R,S)-beta-butyrolactone ROP. HIC-catalyzed ROP of epsilon-CL and PDL in toluene were successfully performed, giving high molecular weight poly(epsilon-caprolactone) and omega-poly(pentadecalactone). In addition, the relative activities of immobilized Candida antarctica lipase B (CALB) and HIC for epsilon-CL and PDL polymerizations are reported herein. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomacromolecules Pubmed

Humicola insolens cutinase-catalyzed lactone ring-opening polymerizations: kinetic and mechanistic studies.

Biomacromolecules , Volume 9 (2): 5 – Apr 14, 2008

Humicola insolens cutinase-catalyzed lactone ring-opening polymerizations: kinetic and mechanistic studies.


Abstract

This paper explores reaction kinetics and mechanism for immobilized Humicola insolenscutinase (HIC), an important new biocatalyst that efficiently catalyzes non-natural polyester synthetic reactions. HIC, immobilized on Lewatit, was used as catalyst for epsilon-caprolactone (CL) and omega-pentadecalactone (PDL) ring-opening polymerizations (ROPs). Plots of percent CL conversion vs time were obtained in the temperature range from 50 to 90 degrees C. The kinetic plot of ln([M]0/[M]t) vs time (r2 = 0.99) for HIC-catalyzed bulk ROP of CL was linear, indicating that chain termination did not occur and the propagation rate is first order with respect to monomer concentration. Furthermore, linearity to 90% conversion for M(n) vs fractional CL conversion is consistent with a chain-end propagation mechanism. Deviation from linearity above 90% conversion indicates that a competition between ring-opening chain-end propagation and chain growth by steplike polycondensations takes place at high monomer conversion. HIC was inactive for catalysis of L-lactide and (R,S)-beta-butyrolactone ROP. HIC-catalyzed ROP of epsilon-CL and PDL in toluene were successfully performed, giving high molecular weight poly(epsilon-caprolactone) and omega-poly(pentadecalactone). In addition, the relative activities of immobilized Candida antarctica lipase B (CALB) and HIC for epsilon-CL and PDL polymerizations are reported herein.

Loading next page...
 
/lp/pubmed/humicola-insolens-cutinase-catalyzed-lactone-ring-opening-qeSswTBWRN

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1525-7797
eISSN
1526-4602
DOI
10.1021/bm701269p
pmid
18198834

Abstract

This paper explores reaction kinetics and mechanism for immobilized Humicola insolenscutinase (HIC), an important new biocatalyst that efficiently catalyzes non-natural polyester synthetic reactions. HIC, immobilized on Lewatit, was used as catalyst for epsilon-caprolactone (CL) and omega-pentadecalactone (PDL) ring-opening polymerizations (ROPs). Plots of percent CL conversion vs time were obtained in the temperature range from 50 to 90 degrees C. The kinetic plot of ln([M]0/[M]t) vs time (r2 = 0.99) for HIC-catalyzed bulk ROP of CL was linear, indicating that chain termination did not occur and the propagation rate is first order with respect to monomer concentration. Furthermore, linearity to 90% conversion for M(n) vs fractional CL conversion is consistent with a chain-end propagation mechanism. Deviation from linearity above 90% conversion indicates that a competition between ring-opening chain-end propagation and chain growth by steplike polycondensations takes place at high monomer conversion. HIC was inactive for catalysis of L-lactide and (R,S)-beta-butyrolactone ROP. HIC-catalyzed ROP of epsilon-CL and PDL in toluene were successfully performed, giving high molecular weight poly(epsilon-caprolactone) and omega-poly(pentadecalactone). In addition, the relative activities of immobilized Candida antarctica lipase B (CALB) and HIC for epsilon-CL and PDL polymerizations are reported herein.

Journal

BiomacromoleculesPubmed

Published: Apr 14, 2008

There are no references for this article.