Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Friedman, M. Lachenmayer, Jing Wang, Liqiang He, Shibu Poulose, M. Komatsu, G. Holstein, Zhenyu Yue (2012)
Disrupted Autophagy Leads to Dopaminergic Axon and Dendrite Degeneration and Promotes Presynaptic Accumulation of α-Synuclein and LRRK2 in the BrainThe Journal of Neuroscience, 32
B. Thomas, M. Beal (2011)
Molecular insights into Parkinson's diseaseF1000 Medicine Reports, 3
Joseph Mazzulli, You-hai Xu, Ying Sun, Adam Knight, P. McLean, G. Caldwell, E. Sidransky, G. Grabowski, D. Krainc (2011)
Gaucher Disease Glucocerebrosidase and α-Synuclein Form a Bidirectional Pathogenic Loop in SynucleinopathiesCell, 146
P. Schultheis, T. Hagen, Kate O’Toole, A. Tachibana, C. Burke, D. McGill, Gbolahan Okunade, G. Shull (2004)
Characterization of the P5 subfamily of P-type transport ATPases in mice.Biochemical and biophysical research communications, 323 3
G. Tofaris (2012)
Lysosome‐dependent pathways as a unifying theme in Parkinson's diseaseMovement Disorders, 27
O. Goker-Alpan, B. Stubblefield, B. Giasson, E. Sidransky (2010)
Glucocerebrosidase is present in α-synuclein inclusions in Lewy body disordersActa Neuropathologica, 120
Jason Covy, E. Waxman, B. Giasson (2012)
Characterization of cellular protective effects of ATP13A2/PARK9 expression and alterations resulting from pathogenic mutantsJournal of Neuroscience Research, 90
P. Anglade, S. Vyas, F. Javoy‐Agid, M. Herrero, P. Michel, J. Marquez, A. Mouatt‐Prigent, M. Ruberg, E. Hirsch, Y. Agid (1997)
Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease.Histology and histopathology, 12 1
D. Hernandez, Ciara Torres, W. Setlik, C. Cebrián, E. Mosharov, Guomei Tang, Hsiao-Chun Cheng, N. Kholodilov, O. Yarygina, R. Burke, M. Gershon, D. Sulzer (2012)
Regulation of Presynaptic Neurotransmission by MacroautophagyNeuron, 74
J. Bras, A. Singleton, M. Cookson, J. Hardy (2008)
Emerging pathways in genetic Parkinson's disease: Potential role of ceramide metabolism in Lewy body diseaseThe FEBS Journal, 275
Y. Chu, H. Dodiya, P. Aebischer, C. Olanow, J. Kordower (2009)
Alterations in lysosomal and proteasomal markers in Parkinson's disease: Relationship to alpha-synuclein inclusionsNeurobiology of Disease, 35
V. Pivtoraiko, A. Harrington, B. Mader, Austin Luker, G. Caldwell, Kim Caldwell, K. Roth, J. Shacka (2010)
Low‐dose bafilomycin attenuates neuronal cell death associated with autophagy‐lysosome pathway dysfunctionJournal of Neurochemistry, 114
M. Komatsu, S. Waguri, T. Chiba, S. Murata, Jun-ichi Iwata, I. Tanida, T. Ueno, M. Koike, Y. Uchiyama, E. Kominami, Keiji Tanaka (2006)
Loss of autophagy in the central nervous system causes neurodegeneration in miceNature, 441
W. Yu, A. Cuervo, Asok Kumar, C. Peterhoff, S. Schmidt, Ju-Hyun Lee, P. Mohan, M. Mercken, M. Farmery, L. Tjernberg, Ying Jiang, K. Duff, Y. Uchiyama, J. Näslund, P. Mathews, A. Cataldo, R. Nixon (2005)
Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer's diseaseThe Journal of Cell Biology, 171
Evangelia Emmanouilidou, L. Stefanis, K. Vekrellis (2010)
Cell-produced α-synuclein oligomers are targeted to, and impair, the 26S proteasomeNeurobiology of Aging, 31
A. Podhajska, A. Musso, A. Trančíkova, K. Stafa, R. Moser, Sarah Sonnay, Liliane Glauser, D. Moore (2012)
Common Pathogenic Effects of Missense Mutations in the P-Type ATPase ATP13A2 (PARK9) Associated with Early-Onset ParkinsonismPLoS ONE, 7
Marco Sardiello, M. Palmieri, Alberto Ronza, D. Medina, M. Valenza, V. Gennarino, Chiara Malta, Francesca Donaudy, V. Embrione, R. Polishchuk, S. Banfi, G. Parenti, E. Cattaneo, A. Ballabio (2009)
A Gene Network Regulating Lysosomal Biogenesis and FunctionScience, 325
M. Shtilerman, T. Ding, P. Lansbury (2002)
Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease?Biochemistry, 41 12
A. Cuervo, L. Stefanis, R. Fredenburg, P. Lansbury, D. Sulzer (2004)
Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy.Science, 305 5688
A. Winslow, Chien‐Wen Chen, S. Corrochano, A. Acevedo-Arozena, D. Gordon, A. Peden, Maike Lichtenberg, Fiona Menzies, B. Ravikumar, S. Imarisio, Steve Brown, C. O’Kane, D. Rubinsztein (2010)
α-Synuclein impairs macroautophagy: implications for Parkinson’s diseaseThe Journal of Cell Biology, 190
J. Bové, M. Martínez-Vicente, M. Vila (2011)
Fighting neurodegeneration with rapamycin: mechanistic insightsNature Reviews Neuroscience, 12
Yh Xu, Ying Sun, H. Ran, B. Quinn, David Witte, David Witte, Ga Grabowski (2011)
Accumulation and distribution of α-synuclein and ubiquitin in the CNS of Gaucher disease mouse models.Molecular genetics and metabolism, 102 4
C. Perier, M. Vila (2012)
Mitochondrial biology and Parkinson's disease.Cold Spring Harbor perspectives in medicine, 2 2
Keiichi Inoue, Joanne Rispoli, H. Kaphzan, E. Klann, E. Chen, Jongpil Kim, M. Komatsu, A. Abeliovich (2012)
Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathwayMolecular Neurodegeneration, 7
Gitler (2009)
Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicityNat Genet, 41
Janet Ugolino, Shengyun Fang, C. Kubisch, M. Monteiro (2011)
Mutant Atp13a2 proteins involved in parkinsonism are degraded by ER-associated degradation and sensitize cells to ER-stress induced cell death.Human molecular genetics, 20 18
B. Dehay, A. Ramírez, M. Martínez-Vicente, C. Perier, M. Canron, E. Doudnikoff, A. Vital, M. Vila, C. Klein, E. Bézard (2012)
Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegenerationProceedings of the National Academy of Sciences, 109
D. Ebrahimi‐Fakhari, I. Cantuti-castelvetri, Z. Fan, E. Rockenstein, E. Masliah, B. Hyman, P. McLean, Vivek Unni (2011)
Distinct Roles In Vivo for the Ubiquitin–Proteasome System and the Autophagy–Lysosomal Pathway in the Degradation of α-SynucleinThe Journal of Neuroscience, 31
M. Martínez-Vicente, Z. Tallóczy, Susmita Kaushik, A. Massey, Joseph Mazzulli, E. Mosharov, Roberto Hodara, R. Fredenburg, D. Wu, A. Follenzi, W. Dauer, S. Przedborski, H. Ischiropoulos, P. Lansbury, D. Sulzer, A. Cuervo (2008)
Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy.The Journal of clinical investigation, 118 2
Qiangwei Xia, L. Liao, Dongmei Cheng, D. Duong, M. Gearing, J. Lah, A. Levey, Junmin Peng (2008)
Proteomic identification of novel proteins associated with Lewy bodies.Frontiers in bioscience : a journal and virtual library, 13
M. Vila, J. Bové, B. Dehay, Natalia Rodriguez-Muela, P. Boya (2011)
Lysosomal membrane permeabilization in Parkinson diseaseAutophagy, 7
J. Webb, B. Ravikumar, J. Atkins, J. Skepper, D. Rubinsztein (2003)
α-Synuclein Is Degraded by Both Autophagy and the Proteasome*Journal of Biological Chemistry, 278
M. Usenovic, Adam Knight, Arpita Ray, Victoria Wong, K. Brown, G. Caldwell, Kim Caldwell, I. Stagljar, D. Krainc (2012)
Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity.Human molecular genetics, 21 17
Yong-Hwan Kim, A. Rane, S. Lussier, J. Andersen (2011)
Lithium protects against oxidative stress‐mediated cell death in α‐synuclein‐overexpressing in vitro and in vivo models of Parkinson's diseaseJournal of Neuroscience Research, 89
T. Lübke, P. Lobel, D. Sleat (2009)
Proteomics of the lysosome.Biochimica et biophysica acta, 1793 4
H. Lashuel, C. Overk, Abid Oueslati, E. Masliah (2012)
The many faces of α-synuclein: from structure and toxicity to therapeutic targetNature Reviews Neuroscience, 14
Ishrat Ahmed, Yideng Liang, Sabitha Schools, V. Dawson, T. Dawson, J. Savitt (2012)
Development and Characterization of a New Parkinson's Disease Model Resulting from Impaired AutophagyThe Journal of Neuroscience, 32
A. Lees, A. Singleton (2007)
Clinical heterogeneity of ATP13A2 linked disease (Kufor-Rakeb) justifies a PARK designationNeurology, 68
B. Spencer, Rewati Potkar, M. Trejo, E. Rockenstein, C. Patrick, R. Gindi, A. Adame, T. Wyss-Coray, E. Masliah (2009)
Beclin 1 Gene Transfer Activates Autophagy and Ameliorates the Neurodegenerative Pathology in α-Synuclein Models of Parkinson's and Lewy Body DiseasesThe Journal of Neuroscience, 29
S. Hamamichi, Renee Rivas, Adam Knight, Songsong Cao, Kim Caldwell, G. Caldwell (2008)
Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease modelProceedings of the National Academy of Sciences, 105
A. Grünewald, B. Arns, Philip Seibler, A. Rakovic, A. Münchau, A. Ramírez, C. Sue, C. Klein (2012)
ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndromeNeurobiology of Aging, 33
Rochet (2012)
Molecular insights into Parkinson's diseaseProg Mol Biol Transl Sci, 107
S. Sardi, J. Clarke, Cathrine Kinnecom, Thomas Tamsett, Lingyun Li, L. Stanek, M. Passini, G. Grabowski, M. Schlossmacher, R. Sidman, Seng Cheng, L. Shihabuddin (2011)
CNS expression of glucocerebrosidase corrects α-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathyProceedings of the National Academy of Sciences, 108
He‐Jin Lee, Smita Patel, Seung-Jae Lee (2005)
Intravesicular Localization and Exocytosis of α-Synuclein and its AggregatesThe Journal of Neuroscience, 25
Sidransky (2009)
Multicenter analysis of glucocerebrosidase mutations in Parkinson's diseaseN Engl J Med, 361
B. Dehay, J. Bové, Natalia Rodriguez-Muela, C. Perier, A. Recasens, P. Boya, M. Vila (2010)
Pathogenic Lysosomal Depletion in Parkinson's DiseaseThe Journal of Neuroscience, 30
Valerie Cullen, M. Lindfors, Juliana Ng, A. Paetau, E. Swinton, Piotr Kolodziej, Heather Boston, P. Saftig, J. Woulfe, M. Feany, L. Myllykangas, M. Schlossmacher, J. Tyynelä (2009)
Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivoMolecular Brain, 2
J. Aharon-Peretz, H. Rosenbaum, R. Gershoni-baruch (2004)
Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews.The New England journal of medicine, 351 19
J. Rodríguez-Navarro, L. Rodríguez, M. Casarejos, R. Solano, A. Gómez, J. Perucho, A. Cuervo, J. Yébenes, M. Mena (2010)
Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activationNeurobiology of Disease, 39
W. Yu, B. Dorado, H. Figueroa, Lili Wang, E. Planel, M. Cookson, L. Clark, K. Duff (2009)
Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein.The American journal of pathology, 175 2
(2012)
Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove
Liyan Qiao, S. Hamamichi, Kim Caldwell, G. Caldwell, T. Yacoubian, Scott Wilson, Zuo-Lei Xie, L. Speake, Rachael Parks, Donna Crabtree, Qiuli Liang, S. Crimmins, Lonnie Schneider, Y. Uchiyama, T. Iwatsubo, Yi Zhou, Lisheng Peng, Y. Lu, D. Standaert, K. Walls, J. Shacka, K. Roth, Jianhua Zhang (2008)
Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicityMolecular Brain, 1
A. Sànchez-Dànes, Y. Richaud-Patin, Iria Carballo-Carbajal, S. Jiménez-Delgado, Carles Caig, S. Mora, Claudia Guglielmo, M. Ezquerra, B. Patel, A. Giralt, J. Canals, M. Memo, J. Alberch, J. López-Barneo, M. Vila, A. Cuervo, E. Tolosa, A. Consiglio, Á. Raya (2012)
Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's diseaseEMBO Molecular Medicine, 4
Jin-Sung Park, P. Mehta, A. Cooper, D. Veivers, A. Heimbach, Barbara Stiller, C. Kubisch, Victor Fung, D. Krainc, A. Mackay-Sim, C. Sue (2011)
Pathogenic effects of novel mutations in the P‐type ATPase ATP13A2 (PARK9) causing Kufor‐Rakeb syndrome, a form of early‐onset parkinsonismHuman Mutation, 32
U. Pettersson (2009)
Faculty Opinions recommendation of Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity.
M. Cookson, O. Bandmann (2010)
Parkinson's disease: insights from pathways.Human molecular genetics, 19 R1
A. Fonzo, H. Chien, M. Socal, S. Giraudo, C. Tassorelli, G. Iliceto, G. Fabbrini, R. Marconi, E. Fincati, G. Abruzzese, P. Marini, F. Squitieri, M. Horstink, P. Montagna, A. Libera, F. Stocchi, S. Goldwurm, J. Ferreira, G. Meco, E. Martignoni, L. Lopiano, L. Jardim, B. Oostra, E. Barbosa, V. Bonifati (2007)
ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson diseaseNeurology, 68
Jian‐hui Zhu, Fengli Guo, J. Shelburne, Simon Watkins, C. Chu (2003)
Localization of Phosphorylated ERK/MAP Kinases to Mitochondria and Autophagosomes in Lewy Body DiseasesBrain Pathology, 13
K. Wakabayashi, K. Tanji, S. Odagiri, Y. Miki, F. Mori, H. Takahashi (2012)
The Lewy Body in Parkinson’s Disease and Related Neurodegenerative DisordersMolecular Neurobiology, 47
G. Tofaris, Hyoung-Tae Kim, R. Hourez, Jin Jung, K. Kim, A. Goldberg (2011)
Ubiquitin ligase Nedd4 promotes α-synuclein degradation by the endosomal–lysosomal pathwayProceedings of the National Academy of Sciences, 108
Sovan Sarkar, J. Davies, Zebo Huang, A. Tunnacliffe, D. Rubinsztein (2007)
Trehalose, a Novel mTOR-independent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and α-Synuclein*Journal of Biological Chemistry, 282
N. Xiong, Min Jia, Chunnuan Chen, Jing Xiong, Zongze Zhang, Jinsha Huang, Lingling Hou, Hecheng Yang, Xuebing Cao, Zhihou Liang, Shenggang Sun, Zhicheng Lin, Tao Wang (2011)
Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5YNeuroscience, 199
A. Gusdon, Jian‐hui Zhu, B. Houten, C. Chu (2012)
ATP13A2 regulates mitochondrial bioenergetics through macroautophagyNeurobiology of Disease, 45
M. Komatsu, Qing Wang, G. Holstein, V. Friedrich, Jun-ichi Iwata, E. Kominami, B. Chait, Keiji Tanaka, Zhenyu Yue (2007)
Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degenerationProceedings of the National Academy of Sciences, 104
S. Mak, A. McCormack, A. Manning-Boğ, A. Cuervo, D. Monte (2010)
Lysosomal Degradation of α-Synuclein in Vivo*The Journal of Biological Chemistry, 285
A. Cuervo, L. Stefanis, R. Fredenburg, P. Lansbury, D. Sulzer (2004)
Impaired Degradation of Mutant α-Synuclein by Chaperone-Mediated AutophagyScience, 305
D. Ramonet, A. Podhajska, K. Stafa, Sarah Sonnay, A. Trančíkova, Elpida Tsika, O. Pletnikova, J. Troncoso, Liliane Glauser, D. Moore (2012)
PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity.Human molecular genetics, 21 8
T. Dawson, V. Dawson (2011)
A Lysosomal Lair for a Pathogenic Protein PairScience Translational Medicine, 3
P. Kim, D. Hailey, R. Mullen, J. Lippincott-Schwartz (2008)
Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomesProceedings of the National Academy of Sciences, 105
Taichi Hara, Kenji Nakamura, M. Matsui, A. Yamamoto, Yohko Nakahara, Rika Suzuki-Migishima, M. Yokoyama, K. Mishima, I. Saito, H. Okano, N. Mizushima (2006)
Suppression of basal autophagy in neural cells causes neurodegenerative disease in miceNature, 441
Valerie Cullen, S. Sardi, Juliana Ng, You-hai Xu, Ying Sun, J. Tomlinson, Piotr Kolodziej, I. Kahn, P. Saftig, J. Woulfe, J. Rochet, M. Glicksman, Seng Cheng, G. Grabowski, L. Shihabuddin, M. Schlossmacher (2011)
Acid β‐glucosidase mutants linked to gaucher disease, parkinson disease, and lewy body dementia alter α‐synuclein processingAnnals of Neurology, 69
L. Álvarez-Erviti, M. Rodriguez-Oroz, J. Cooper, Cristina Caballero, I. Ferrer, J. Obeso, A. Schapira (2010)
Chaperone-mediated autophagy markers in Parkinson disease brains.Archives of neurology, 67 12
Karyn Schmidt, Devin Wolfe, Barbara Stiller, D. Pearce (2009)
Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2.Biochemical and biophysical research communications, 383 2
C. Settembre, Chiara Malta, V. Polito, Moises Arencibia, Francesco Vetrini, Serkan Erdin, S. Erdin, Tuong Huynh, D. Medina, P. Colella, Marco Sardiello, D. Rubinsztein, A. Ballabio (2011)
TFEB Links Autophagy to Lysosomal BiogenesisScience, 332
M. Usenovic, E. Tresse, Joseph Mazzulli, J. Taylor, D. Krainc (2012)
Deficiency of ATP13A2 Leads to Lysosomal Dysfunction, α-Synuclein Accumulation, and NeurotoxicityThe Journal of Neuroscience, 32
I. Enquist, C. Bianco, A. Ooka, E. Nilsson, J. Månsson, M. Ehinger, J. Richter, R. Brady, D. Kirik, S. Karlsson (2007)
Murine models of acute neuronopathic Gaucher diseaseProceedings of the National Academy of Sciences, 104
Ozlem Goker-Alpan, Benoit Giasson, M. Eblan, J. Nguyen, H. Hurtig, V. Lee, J. Trojanowski, Ellen Sidransky (2006)
Glucocerebrosidase mutations are an important risk factor for Lewy body disordersNeurology, 67
J. Stockman (2011)
Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's DiseaseYearbook of Pediatrics, 2011
J. Luzio, P. Pryor, N. Bright (2007)
Lysosomes: fusion and functionNature Reviews Molecular Cell Biology, 8
Kondi Wong, E. Sidransky, A. Verma, Tonghui Mixon, G. Sandberg, Laura Wakefield, A. Morrison, A. Lwin, C. Colegial, J. Allman, R. Schiffmann (2004)
Neuropathology provides clues to the pathophysiology of Gaucher disease.Molecular genetics and metabolism, 82 3
A. Ramírez, A. Heimbach, Jan Gründemann, Barbara Stiller, D. Hampshire, L. Cid, I. Goebel, A. Mubaidin, Abdul-Latif Wriekat, J. Roeper, A. Al-din, A. Hillmer, M. Karsak, B. Liss, C. Woods, M. Behrens, C. Kubisch (2006)
Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPaseNature Genetics, 38
A. Harrington, T. Yacoubian, Sunny Slone, Kim Caldwell, G. Caldwell (2012)
Functional Analysis of VPS41-Mediated Neuroprotection in Caenorhabditis elegans and Mammalian Models of Parkinson's DiseaseThe Journal of Neuroscience, 32
L. Crews, B. Spencer, Paula Desplats, C. Patrick, A. Paulino, E. Rockenstein, L. Hansen, A. Adame, D. Galasko, E. Masliah (2010)
Selective Molecular Alterations in the Autophagy Pathway in Patients with Lewy Body Disease and in Models of α-SynucleinopathyPLoS ONE, 5
M. Xilouri, Oystein Brekk, L. Stefanis (2012)
Alpha-synuclein and Protein Degradation Systems: a Reciprocal RelationshipMolecular Neurobiology, 47
F. Demarchi, C. Bertoli, T. Copetti, I. Tanida, C. Brancolini, E. Eskelinen, C. Schneider (2006)
Calpain is required for macroautophagy in mammalian cellsThe Journal of Cell Biology, 175
ABSTRACT Impairment of autophagy‐lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD‐related neurodegeneration. In addition, PD‐linked mutations and post‐translational modifications of α‐synuclein impair its own lysosomal‐mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD‐related genes, such as leucine‐rich repeat kinase‐2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)‐induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal‐related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P‐type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α‐synuclein accumulation, and neurotoxicity. First, PD‐related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α‐synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum‐Golgi to lysosomes, leading to neurodegeneration. Second, PD‐related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α‐synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease‐modifying therapeutic strategies aimed at restoring lysosomal levels and function. © 2013 Movement Disorder Society
Movement Disorders – Wiley
Published: Jun 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.