Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II).

Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II). Murine leukemia L1210 cells, either sensitive or resistant to the toxic action of the cancer chemotherapeutic agent cis-diamminedichloroplatinum(II), have been studied for potential differences in the formation and repair of drug-induced DNA damage. The sensitivity for these experiments was obtained by using the radiolabeled analogue [3H]-cis-dichloro(ethylenediamine)platinum(II). The resistant cells demonstrated a 40% reduction in drug accumulation but a qualitatively similar profile of DNA-bound adducts. These adducts resembled those previously characterized in pure DNA and represented intrastrand cross-links at GG, AG, and GNG (N is any nucleotide) sequences in DNA. Repair of these cross-links occurred in a biphasic manner: rapid for the first 6 h and then much slower. The resistant cells removed up to 4 times as many adducts during the rapid phase of repair. The extent of this repair did not directly correlate with the degree of resistance in that cells with 100-fold resistance were only slightly more effective at repair than cells with 20-fold resistance. Therefore, although enhanced DNA repair is thought to contribute markedly to drug resistance, other mechanisms for tolerance of DNA damage may also occur in these cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemistry Pubmed

Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II).

Biochemistry , Volume 27 (13): -4725 – Nov 3, 1988

Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II).


Abstract

Murine leukemia L1210 cells, either sensitive or resistant to the toxic action of the cancer chemotherapeutic agent cis-diamminedichloroplatinum(II), have been studied for potential differences in the formation and repair of drug-induced DNA damage. The sensitivity for these experiments was obtained by using the radiolabeled analogue [3H]-cis-dichloro(ethylenediamine)platinum(II). The resistant cells demonstrated a 40% reduction in drug accumulation but a qualitatively similar profile of DNA-bound adducts. These adducts resembled those previously characterized in pure DNA and represented intrastrand cross-links at GG, AG, and GNG (N is any nucleotide) sequences in DNA. Repair of these cross-links occurred in a biphasic manner: rapid for the first 6 h and then much slower. The resistant cells removed up to 4 times as many adducts during the rapid phase of repair. The extent of this repair did not directly correlate with the degree of resistance in that cells with 100-fold resistance were only slightly more effective at repair than cells with 20-fold resistance. Therefore, although enhanced DNA repair is thought to contribute markedly to drug resistance, other mechanisms for tolerance of DNA damage may also occur in these cells.

Loading next page...
 
/lp/pubmed/enhanced-dna-repair-as-a-mechanism-of-resistance-to-cis-rTlzcfj49m

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0006-2960
DOI
10.1021/bi00413a022
pmid
3167012

Abstract

Murine leukemia L1210 cells, either sensitive or resistant to the toxic action of the cancer chemotherapeutic agent cis-diamminedichloroplatinum(II), have been studied for potential differences in the formation and repair of drug-induced DNA damage. The sensitivity for these experiments was obtained by using the radiolabeled analogue [3H]-cis-dichloro(ethylenediamine)platinum(II). The resistant cells demonstrated a 40% reduction in drug accumulation but a qualitatively similar profile of DNA-bound adducts. These adducts resembled those previously characterized in pure DNA and represented intrastrand cross-links at GG, AG, and GNG (N is any nucleotide) sequences in DNA. Repair of these cross-links occurred in a biphasic manner: rapid for the first 6 h and then much slower. The resistant cells removed up to 4 times as many adducts during the rapid phase of repair. The extent of this repair did not directly correlate with the degree of resistance in that cells with 100-fold resistance were only slightly more effective at repair than cells with 20-fold resistance. Therefore, although enhanced DNA repair is thought to contribute markedly to drug resistance, other mechanisms for tolerance of DNA damage may also occur in these cells.

Journal

BiochemistryPubmed

Published: Nov 3, 1988

There are no references for this article.