Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Isolation and characterization of a cellulase gene family member expressed during avocado fruit ripening

Isolation and characterization of a cellulase gene family member expressed during avocado fruit... We present in this paper the structural analysis of two members of a small cellulase gene family, designated cel1 and cel2, from avocado. These genes were isolated by screening a λ EMBL3 genomic library with a ripening-induced cellulase cDNA. Restriction endonuclease and Southern blot analyses showed that the cel1 gene is highly homologous to the cellulase cDNA and thus represents a ripening-related cellulase gene. The other cellulase gene, cel2, is closely related to cel1, but is divergent at its 5′ end. The nucleotide sequence of a 5 kb region encompassing the cel1 gene was determined. Four previously characterized cellulase cDNAs from ripe fruit are identical to the eight exons of the cel1 gene. RNase protection and primer extension analyses were used to define the transcription start site of cel1 and to quantitate cel1 transcripts in ripening fruit. The cel1 mRNA was present at a low level in unripe fruit and increased 37-fold during ripening. Partial DNA sequence analysis of cel2 and comparison to the cel1 sequence revealed a high degree of similarity both at the DNA and deduced amino acid sequence levels. No characterized cellulase cDNAs derived from ripe fruit represent cel2 transcripts. These data suggest that the cel1 gene is responsible for a major portion, if not all, of the cellulase transcripts in ripe fruit. The DNA sequence of 1.4 kb of 5′ flanking DNA of the cel1 gene was compared to the upstream sequence of other ethylene-regulated genes. Several interesting upstream sequence motifs were identified and are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Genetics and Genomics Springer Journals

Isolation and characterization of a cellulase gene family member expressed during avocado fruit ripening

Loading next page...
 
/lp/springer-journals/isolation-and-characterization-of-a-cellulase-gene-family-member-rbAzHiXn5R

References (54)

Publisher
Springer Journals
Copyright
Copyright © 1990 by Springer-Verlag
Subject
Life Sciences; Plant Genetics and Genomics; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics; Biochemistry, general
ISSN
1617-4615
eISSN
1432-1874
DOI
10.1007/BF00315799
Publisher site
See Article on Publisher Site

Abstract

We present in this paper the structural analysis of two members of a small cellulase gene family, designated cel1 and cel2, from avocado. These genes were isolated by screening a λ EMBL3 genomic library with a ripening-induced cellulase cDNA. Restriction endonuclease and Southern blot analyses showed that the cel1 gene is highly homologous to the cellulase cDNA and thus represents a ripening-related cellulase gene. The other cellulase gene, cel2, is closely related to cel1, but is divergent at its 5′ end. The nucleotide sequence of a 5 kb region encompassing the cel1 gene was determined. Four previously characterized cellulase cDNAs from ripe fruit are identical to the eight exons of the cel1 gene. RNase protection and primer extension analyses were used to define the transcription start site of cel1 and to quantitate cel1 transcripts in ripening fruit. The cel1 mRNA was present at a low level in unripe fruit and increased 37-fold during ripening. Partial DNA sequence analysis of cel2 and comparison to the cel1 sequence revealed a high degree of similarity both at the DNA and deduced amino acid sequence levels. No characterized cellulase cDNAs derived from ripe fruit represent cel2 transcripts. These data suggest that the cel1 gene is responsible for a major portion, if not all, of the cellulase transcripts in ripe fruit. The DNA sequence of 1.4 kb of 5′ flanking DNA of the cel1 gene was compared to the upstream sequence of other ethylene-regulated genes. Several interesting upstream sequence motifs were identified and are discussed.

Journal

Molecular Genetics and GenomicsSpringer Journals

Published: Aug 25, 2004

There are no references for this article.