Access the full text.
Sign up today, get DeepDyve free for 14 days.
Chaya Kalcheim, M. Teillet (1989)
Consequences of somite manipulation on the pattern of dorsal root ganglion development.Development, 106 1
C. Stern, R. Keynes (1987)
Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo.Development, 99 2
S. Mansour, K. Thomas, M. Capecchi (1988)
Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genesNature, 336
A. Verbout (1985)
Introduction and Review of the Literature
M. Angelis, J. Mclntyre, A. Gossler (1997)
Maintenance of somite borders in mice requires the Delta homologue Dll1Nature, 386
S Artavanis-Tsakonas, K Matsuno, ME Fortini (1995)
Notch SignalingScience, 268
Hui Zheng, Minghao Jiang, M. Trumbauer, D. Sirinathsinghji, R. Hopkins, David Smith, R. Heavens, G. Dawson, S. Boyce, M. Conner, K. Stevens, H. Slunt, S. Sisodia, Howard Chen, L. Ploeg (1995)
β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activityCell, 81
M. Cruts, L. Hendriks, C. Broeckhoven (1996)
The presenilin genes: a new gene family involved in Alzheimer disease pathology.Human molecular genetics, 5 Spec No
Bodo Christ, J. Wilting (1992)
From somites to vertebral column.Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft, 174 1
F. Busfield, A. Goate (1995)
The genetics of Alzheimer's disease and mutations in the amyloid β-protein precursor gene
R. Burgess, P. Cserjesi, K. Ligon, E. Olson (1995)
Paraxis: a basic helix-loop-helix protein expressed in paraxial mesoderm and developing somites.Developmental biology, 168 2
S. Artavanis-Tsakonas, K. Matsuno, M. Fortini (1995)
Notch signaling : Signal transductionScience, 268
R. Conlon, A. Reaume, J. Rossant (1995)
Notch1 is required for the coordinate segmentation of somites.Development, 121 5
G. Thinakaran, D. Borchelt, Michael Lee, H. Slunt, L. Spitzer, Grace Kim, T. Ratovitsky, F. Davenport, C. Nordstedt, M. Seeger, J. Hardy, A. Levey, S. Gandy, N. Jenkins, N. Copeland, D. Price, S. Sisodia (1996)
Endoproteolysis of Presenilin 1 and Accumulation of Processed Derivatives In VivoNeuron, 17
Berthold Bettenhausen, M. Angelis, D. Simon, J. Guénet, A. Gossler (1995)
Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta.Development, 121 8
A. Joutel, C. Corpechot, A. Ducros, K. Vahedi, H. Chabriat, P. Mouton, S. Alamowitch, V. Domenga, Michaelle Cécillion, E. Maréchal, J. Maciazek, C. Vayssière, C. Cruaud, E. Cabanis, M. Ruchoux, J. Weissenbach, J. Bach, M. Bousser, E. Tournier-Lasserve (1996)
Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementiaNature, 383
K. Duff, C. Eckman, C. Zehr, Xin Yu, C. Prada, J. Pérez-Tur, M. Hutton, L. Buée, Y. Harigaya, D. Yager, D. Morgan, M. Gordon, L. Holcomb, L. Refolo, B. Zenk, J. Hardy, S. Younkin (1996)
Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1Nature, 383
D. Levitan, I. Greenwald (1995)
Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease geneNature, 377
A. Verbout (1985)
The development of the vertebral column.Advances in anatomy, embryology, and cell biology, 90
Michael Lee, H. Slunt, L. Martin, G. Thinakaran, Grace Kim, S. Gandy, M. Seeger, E. Koo, D. Price, S. Sisodia (1996)
Expression of Presenilin 1 and 2 (PS1 and PS2) in Human and Murine TissuesThe Journal of Neuroscience, 16
E. Ikonen, M. Tagaya, O. Ullrich, C. Montecucco, K. Simons (1995)
Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cellsCell, 81
B. Hogan, F. Costantini, E. Lacy (1986)
Manipulating the mouse embryo: A laboratory manual
D. Borchelt, G. Thinakaran, C. Eckman, Michael Lee, F. Davenport, T. Ratovitsky, C. Prada, Grace Kim, S. Seekins, D. Yager, H. Slunt, Rong Wang, M. Seeger, A. Levey, S. Gandy, N. Copeland, N. Jenkins, D. Price, S. Younkin, S. Sisodia (1996)
Familial Alzheimer's Disease–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In VivoNeuron, 17
R. Sherrington, E. Rogaev, Yan Liang, E. Rogaeva, G. Lévesque, M. Ikeda, H. Chi, Chih-Ping Lin, Gang Li, K. Holman, T. Tsuda, L. Mar, J. Foncin, A. Bruni, M. Montesi, S. Sorbi, I. Rainero, L. Pinessi, L. Nee, I. Chumakov, D. Pollen, A. Brookes, P. Sanseau, R. Polinsky, W. Wasco, H. Silva, J. Haines, M. Pericak-Vance, R. Tanzi, A. Roses, P. Fraser, J. Rommens, P. George-Hyslop (1995)
Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's diseaseNature, 375
D. Levitan, T. Doyle, Denise Brousseau, Michael Lee, G. Thinakaran, H. Slunt, S. Sisodia, I. Greenwald (1996)
Assessment of normal and mutant human presenilin function in Caenorhabditis elegans.Proceedings of the National Academy of Sciences of the United States of America, 93 25
U. Deutsch, G. Dressler, P. Gruss (1988)
Pax 1, a member of a paired box homologous murine gene family, is expressed in segmented structures during developmentCell, 53
Haruhiko Koseki, J. Wallin, J. Wilting, Y. Mizutani, Andreas Kispert, C. Ebensperger, Bernhard Herrmann, Bodo Christ, Rudi Balling (1993)
A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae.Development, 119 3
E. Levy-Lahad, W. Wasco, P. Poorkaj, D. Romano, J. Oshima, W. Pettingell, Chang-En Yu, P. Jondro, Stephen Schmidt, Kai Wang, A. Crowley, Ying-Hui Fu, S. Guénette, D. Galas, E. Nemens, E. Wijsman, T. Bird, G. Schellenberg, R. Tanzi (1995)
Candidate gene for the chromosome 1 familial Alzheimer's disease locusScience, 269
D. Scheuner, C. Eckman, C. Eckman, M. Jensen, X. Song, M. Citron, N. Suzuki, T. Bird, J. Hardy, M. Hutton, W. Kukull, Eric Larson, E. Levy-Lahad, M. Viitanen, E. Peskind, P. Poorkaj, G. Schellenberg, R. Tanzi, W. Wasco, L. Lannfelt, D. Selkoe, S. Younkin (1996)
Secreted amyloid β–protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's diseaseNature Medicine, 2
E. Rogaev, R. Sherrington, E. Rogaeva, G. Lévesque, M. Ikeda, Yan Liang, H. Chi, Chih-Ping Lin, K. Holman, T. Tsuda, L. Mar, S. Sorbi, B. Nacmias, S. Piacentini, L. Amaducci, I. Chumakov, D. Cohen, L. Lannfelt, P. Fraser, J. Rommens, P. George-Hyslop (1995)
Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 geneNature, 376
J. Blass, Bk Ko, H. Wisniewski (1991)
Pathology of Alzheimer's disease.The Psychiatric clinics of North America, 14 2
D. Kovacs, Hillary Fausett, K. Page, Tae-Wan Kim, R. Moir, D. Merriam, R. Hollister, O. Hallmark, R. Mancini, K. Felsenstein, B. Hyman, R. Tanzi, W. Wasco (1996)
Alzheimer–associated presenilins 1 and 2 : Neuronal expression in brain and localization to intracellular membranes in mammalian cellsNature Medicine, 2
D. Montarras, J. Chelly, E. Bober, H. Arnold, M. Ott, F. Gros, C. Pinset (1991)
Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis.The New biologist, 3 6
P. Swiatek, C. Lindsell, Francisco Amo, G. Weinmaster, T. Gridley (1994)
Notch1 is essential for postimplantation development in mice.Genes & development, 8 6
Approximately 10% of cases of Alzheimer's disease are familial and associated with autosomal dominant inheritance of mutations in genes encoding the amyloid precursor protein1, presenilin 1 (PS1)2 and presenilin 2 (PS2)3,4. Mutations in PS1 are linked to about 25% of cases of early-onset familial Alzheimer's disease5. PS1, which is endoproteolytically processed in vivo 6, is a multipass transmembrane protein and is a functional homologue of SEL-12 (ref. 7), a Caenorhabditis elegans protein that facilitates signalling mediated by the Notch/LIN-12 family of receptors8,9. To examine potential roles for PS1 in facilitating Notch-mediated signalling during mammalian embryogenesis, we generated mice with targeted disruptions of PS1 alleles (PS1 –/– mice). PS1 –/–embryos exhibited abnormal patterning of the axial skeleton and spinal ganglia, phenotypes traced to defects in somite segmentation and differentiation. Moreover, expression of mRNA encoding Notch 1 and DII 1 (delta-like gene I)10, a vertebrate Notch ligand, is markedly reduced in the presomitic mesoderm of PS1 –/– embryos compared to controls. Hence, PS1 is required for the spatiotemporal expression of Notch 1 and Dll 1, which are essential for somite segmentation and maintenance of somite borders11–13.
Nature – Springer Journals
Published: May 15, 1997
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.