Access the full text.
Sign up today, get DeepDyve free for 14 days.
H. Portzehl (1951)
Muskelkontraktion und ModellkontraktionZeitschrift für Naturforschung B, 6
J. Rueegg, R. Straub, B. Twarog (1963)
Inhibition of contraction in a molluscan smooth muscle by thiourea, an inhibitor of the actomyosin contractile mechanismProceedings of the Royal Society of London. Series B. Biological Sciences, 158
A. Weber, R. Herz, I. Reiss (1963)
On the Mechanism of the Relaxing Effect of Fragmented Sarcoplasmic ReticulumThe Journal of General Physiology, 46
R. Filo, D. Bohr, J. Ruegg (1965)
Glycerinated Skeletal and Smooth Muscle: Calcium and Magnesium DependenceScience, 147
O. Meyerhof, W. Schulz (1927)
Über das Verhältnis von Milchsäurebildung und Sauerstoffverbrauch bei der MuskelkontraktionPflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 217
Arturo Quiroz (1856)
CircularThe North-Western Medical and Surgical Journal, 5
W. Hasselbach (1964)
Relaxing factor and the relaxation of muscleProgress in Biophysics & Molecular Biology, 14
H. Lüttgau, R. Niedergerke (1958)
The antagonism between Ca and Na ions on the frog's heartThe Journal of Physiology, 143
H. Portzehl, P. Zaoralek, A. Grieder (1965)
Der Calcium-Spiegel in lebenden und isolierten Muskelfibrillen von Maia Squinado und seine Regulierung durch die sarkoplasmatischen VesikelPflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 286
W. Hartree, A. Hill (1921)
The regulation of the supply of energy in muscular contractionThe Journal of Physiology, 55
Rüegg Jc, Richard Tregear (1966)
Mechanical factors affecting the ATPase activity of glycerol-extracted insect fibrillar flight muscleProceedings of the Royal Society of London. Series B. Biological Sciences, 165
H. Portzehl, P. Caldwell, J. Rueegg (1964)
THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS.Biochimica et biophysica acta, 79
W. Hasselbach (1956)
Die Wechselwirkung verschiedener Nukleosidtriphosphate mit Aktomyosin im GelzustandBiochimica et Biophysica Acta, 20
A. Mühlrád, G. Hegyi (1965)
The role of CA2+ in the adenosine triphosphatase activity of myofibrils.Biochimica et biophysica acta, 105 2
J. Seidel, J. Gergely (1963)
Contraction of glycerinated muscle fibers and the role of calciumBiochemical and Biophysical Research Communications, 13
P. Ward, C. Edwards, E. Benson (1965)
Relation between adenosinetriphosphate activity and sarcomere length in stretched glycerol-extracted frog skeletal muscle.Proceedings of the National Academy of Sciences of the United States of America, 53 6
C. Elison, A. Fairhurst, J. Howell, D. Jenden (1965)
Calcium uptake in glycerol-extracted rabbit psoas muscle fibers. I. Biochemical properties and conditions for uptake.Journal of cellular physiology, 65 2
A. Katz, D. Repke, Barbara Cohen (1966)
Control of the Activity of Highly Purified Cardiac Actomyosin by Ca2+, Na+ and K+Circulation Research, 19
R. Ramsey, S. Street (1940)
The isometric length‐tension diagram of isolated skeletal muscle fibers of the frogJournal of Cellular and Comparative Physiology, 15
H. Brocke (2004)
The activating effects of calcium ions on the contractile systems of insect fibrillar flight musclePflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 290
B. Marsh (1959)
The estimation of inorganic phosphate in the presence of adenosine triphosphate.Biochimica et biophysica acta, 32
E. Bozler (1930)
The heat production of smooth muscleThe Journal of Physiology, 69
F. Briggs, H. Portzehl (1957)
The influence of relaxing factor of the pH dependence of the contraction of muscle models.Biochimica et biophysica acta, 24 3
M. Goodall, A. Szent-Györgyi (1953)
Relaxing Factors in MuscleNature, 172
(1965)
Pitfigers Arch
(1954)
Progr
J. Hanson, H. Huxley (1953)
Structural Basis of the Cross-Striations in MuscleNature, 172
W. Kielley, O. Meyerhof (1948)
Studies on adenosinetriphosphatase of muscle; a new magnesium-activated a denosinetriphosphatase.The Journal of biological chemistry, 176 2
X. Aubert (1956)
Le couplage énergétique de la contraction musculaire
H. Huxley, W. Brown, K. Holmes (1965)
Constancy of Axial Spacings in Frog Sartorius Muscle during ContractionNature, 206
R. Davies (1963)
A Molecular Theory of Muscle Contraction : Calcium-Dependent Contractions with Hydrogen Bond Formation Plus ATP-Dependent Extensions of Part of the Myosin-Actin Cross-BridgesNature, 199
E. Stanley, M. Reiter (1965)
The antagonistic effects of sodium and calcium on the action potential of guinea pig papillary muscleNaunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 252
M. Rockstein, P. Herron (1951)
Colorimetric Determination of Inorganic Phosphate in Microgram QuantitiesAnalytical Chemistry, 23
S. Perry (1951)
The adenosinetriphosphatase activity of myofibrils isolated from skeletal muscle.The Biochemical journal, 48 3
B. Jewell, J. Rϋegg (1966)
Oscillatory contraction of insect fibrillar muscle after glycerol extractionProceedings of the Royal Society of London. Series B. Biological Sciences, 164
H. Luettgau (1963)
The action of calcium ions on potassium contractures of single muscle fibresThe Journal of Physiology, 168
(1956)
Biochim
A. Weber, S. Winicur (1961)
The role of calcium in the superprecipitation of actomyosin.The Journal of biological chemistry, 236
(1948)
I-Ielv
“Isolated” contractile Actomyosinsystems (i.e. glycerolextracted musclefibres) were suspended in ATP-saltsolutions. A graded increase in calcium-ionconcentration (using Calcium-EGTA-buffers) from 10−8–10−7 M to 10−6–10−5 M lead to a graded and proportional increase of tension and ATPase activity without ratelimitation by diffusional processes. The Calciumconcentration for 50% activation (calcium sensitivity) ranges from 10−7 M to 10−6 M at pH 7 in actomyosinsystems of the following muscles: Fibrillar and non-fibrillar muscles of waterbugs including Lethocerus maximus, rabbit sceletal muscle, dog-heart papillary muscle, guinea pig taenia coli, byssus retractor of mytilus edulis (ABRM), cow carotide artery. The calciumthreshold is about 10–100 smaller than the concentration required for maximal activation. Replacement of K ions by Na ions and a increase in the free Mg++ concentration from 10−5 M to 10−3 M as well as the degree of stretchactivation (in fibres of insect fibrillar muscle) had no effect on the calcium sensitivity while a decrease in pH from 7,0 to 6,0 decreased the calciumsensitivity 2× in ABRM and rabbit sceletal muscle, 10× in the heart and 80× in insect muscle. The thresholdconcentration for tension activation is slightly larger than that for ATPase activation, but the ratio of tensionincrease and increase in ATPase activity is a constant (the holding economy) which is independent of calciumconcentration and pH and in tonic smooth muscle this constant is at least 10 times smaller than in striated muscle.
Pflügers Archiv European Journal of Physiologyl of Physiology – Springer Journals
Published: Sep 7, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.