Spin and interaction effects in quantum dots: A Hartree-Fock-Koopmans approach
Spin and interaction effects in quantum dots: A Hartree-Fock-Koopmans approach
Alhassid, Y; Malhotra, S
2002-12-15 00:00:00
We use a Hartree-Fock-Koopmans approach to study spin and interaction effects in a diffusive or chaotic quantum dot. In particular, we derive the statistics of the spacings between successive Coulomb-blockade peaks. We include fluctuations of the matrix elements of the two-body screened interaction, surface-charge potential, and confining potential to leading order in the inverse Thouless conductance. The calculated peak-spacing distribution is compared with experimental results.
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pngPhysical Review BAmerican Physical Society (APS)http://www.deepdyve.com/lp/american-physical-society-aps/spin-and-interaction-effects-in-quantum-dots-a-hartree-fock-koopmans-sjFwBiQzGm
Spin and interaction effects in quantum dots: A Hartree-Fock-Koopmans approach
We use a Hartree-Fock-Koopmans approach to study spin and interaction effects in a diffusive or chaotic quantum dot. In particular, we derive the statistics of the spacings between successive Coulomb-blockade peaks. We include fluctuations of the matrix elements of the two-body screened interaction, surface-charge potential, and confining potential to leading order in the inverse Thouless conductance. The calculated peak-spacing distribution is compared with experimental results.
Journal
Physical Review B
– American Physical Society (APS)
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.