Access the full text.
Sign up today, get DeepDyve free for 14 days.
Xin-Yi Wang, Lin Gan, Shiwei Zhang, Song Gao (2004)
Perovskite-like Metal Formates with Weak Ferromagnetism and as Precursors to Amorphous Materials.Inorganic chemistry, 43 15
Xiu-Dan Shao, Xi Zhang, Chao Shi, Yefeng Yao, Wen Zhang (2015)
Switching Dielectric Constant Near Room Temperature in a Molecular CrystalAdvanced Science, 2
C. Draznieks, J. Newsam, Alan Gorman, C. Freeman, G. Férey (2000)
De Novo Prediction of Inorganic Structures Developed through Automated Assembly of Secondary Building Units (AASBU Method)Angewandte Chemie, 39
O. Sato, Jun Tao, Yuanyuan Zhang (2007)
Magnetische Molekülverbindungen: Schaltung magnetischer Eigenschaften durch externe StimuliAngewandte Chemie, 119
Xi Zhang, Xiu-Dan Shao, Si-Chao Li, Yingjie Cai, Yefeng Yao, R. Xiong, Wen Zhang (2015)
Dynamics of a caged imidazolium cation-toward understanding the order-disorder phase transition and the switchable dielectric constant.Chemical communications, 51 22
I. Flerov, M. Gorev, K. Aleksandrov, A. Tressaud, J. Grannec, M. Couzi (1998)
Phase transitions in elpasolites (ordered perovskites)Materials Science & Engineering R-reports, 24
O. Yaghi, M. O'Keeffe, N. Ockwig, H. Chae, M. Eddaoudi, Jaheon Kim (2003)
Reticular synthesis and the design of new materialsNature, 423
Wen Zhang, Heng‐Yun Ye, R. Graf, H. Spiess, Yefeng Yao, Run-Qiang Zhu, R. Xiong (2013)
Tunable and switchable dielectric constant in an amphidynamic crystal.Journal of the American Chemical Society, 135 14
M. Sánchez-Andújar, S. Presedo, S. Yáñez-Vilar, S. Castro-García, J. Shamir, M. Señarís-Rodríguez (2010)
Characterization of the order-disorder dielectric transition in the hybrid organic-inorganic perovskite-like formate Mn(HCOO)(3)[(CH(3))(2)NH(2)].Inorganic chemistry, 49 4
O. Sato, J. Tao, Yuan-Zhu Zhang (2007)
Control of magnetic properties through external stimuli.Angewandte Chemie, 46 13
C. Mellot‐Draznieks, J. Dutour, G. Férey (2004)
Hybrid organic-inorganic frameworks: routes for computational design and structure prediction.Angewandte Chemie, 43 46
R. Wasylishen, O. Knop, J. Macdonald (1985)
Cation rotation in methylammonium lead halidesSolid State Communications, 56
C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J. Ball, Michael Lee, H. Snaith, A. Petrozza, F. Angelis (2014)
The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment.The journal of physical chemistry letters, 5 2
P. Woodward (1997)
Octahedral Tilting in Perovskites. I. Geometrical ConsiderationsActa Crystallographica Section B-structural Science, 53
Wei-Jian Xu, Shao-Li Chen, Zhi-Tao Hu, Rui‐Biao Lin, Yu-Jun Su, Wei-Xiong Zhang, Xiao‐Ming Chen (2016)
The cation-dependent structural phase transition and dielectric response in a family of cyano-bridged perovskite-like coordination polymers.Dalton transactions, 45 10
Anubhav Jain, S. Ong, G. Hautier, Wei Chen, W. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. Persson (2013)
Commentary: The Materials Project: A materials genome approach to accelerating materials innovationAPL Materials, 1
D. Babel, R. Haegele, G. Pausewang, F. Wall (1973)
Ueber kubische und hexagonale elpasolithe AI2BIMIIIF6Materials Research Bulletin, 8
(2015)
An extended Tolerance Factor approach for organic–inorganic perovskites
P. Woodward (1997)
Octahedral Tilting in Perovskites. II. Structure Stabilizing ForcesActa Crystallographica Section B-structural Science, 53
C. Howard (2005)
Structures and phase transitions in perovskites--a group-theoretical approach.Acta crystallographica. Section A, Foundations of crystallography, 61 Pt 1
M. Knapp, P. Woodward (2006)
A-site cation ordering in AA′BB′O6 perovskitesJournal of Solid State Chemistry, 179
T. Glaser, C. Müller, Michael Sendner, C. Krekeler, O. Semonin, Trevor Hull, O. Yaffe, J. Owen, W. Kowalsky, A. Pucci, R. Lovrinčić (2015)
Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites.The journal of physical chemistry letters, 6 15
H. Mashiyama, Y. Kawamura, H. Kasano, T. Asahi, Y. Noda, H. Kimura (2007)
Disordered Configuration of Methylammonium of CH3NH3PbBr3 Determined by Single Crystal Neutron DiffractometryFerroelectrics, 348
N. Onoda-Yamamuro, T. Matsuo, H. Suga (1992)
Dielectric study of CH3NH3PbX3 (X = Cl, Br, I)Journal of Physics and Chemistry of Solids, 53
Jing Wei, Yicheng Zhao, Heng Li, Guobao Li, Jinlong Pan, Dongsheng Xu, Qing Zhao, D. Yu (2014)
Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells.The journal of physical chemistry letters, 5 21
C. Howard, B. Kennedy, P. Woodward (2003)
Ordered double perovskites -- a group-theoretical analysis.Acta crystallographica. Section B, Structural science, 59 Pt 4
Zhengguo Xiao, Yong-bo Yuan, Yuchuan Shao, Qi Wang, Qingfeng Dong, Cheng Bi, Pankaj Sharma, A. Gruverman, Jinsong Huang (2015)
Giant switchable photovoltaic effect in organometal trihalide perovskite devices.Nature materials, 14 2
D. Mitzi, C. Feild, W. Harrison, A. Guloy (1994)
Conducting tin halides with a layered organic-based perovskite structureNature, 369
A. Polyakov, A. Arkenbout, J. Baas, G. Blake, A. Meetsma, A. Caretta, P. Loosdrecht, T. Palstra (2012)
Coexisting Ferromagnetic and Ferroelectric Order in a CuCl4-based Organic–Inorganic HybridChemistry of Materials, 24
P. Jain, V. Ramachandran, R. Clark, Haida Zhou, B. Toby, N. Dalal, H. Kroto, A. Cheetham (2009)
Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture.Journal of the American Chemical Society, 131 38
K. Aleksandrov, J. Bartolomé (2001)
Structural distortions in families of perovskite-like crystalsPhase Transitions, 74
P. Théato, B. Sumerlin, R. O’Reilly, Thomas Epps (2013)
Stimuli responsive materials.Chemical Society reviews, 42 17
B. Kundys, A. Lappas, M. Viret, V. Kapustianyk, V. Rudyk, S. Semak, C. Simon, Ioanna Bakaimi (2010)
Multiferroicity and hydrogen-bond ordering in (C2H5NH3)2CuCl4 featuring dominant ferromagnetic interactionsPhysical Review B, 81
A. Gormezano, M. Weller (1993)
New quadruple perovskites Ln2Ba2TixSn2–xCu2O11, (0⩽x⩽2): controlling copper–oxygen distances in potential superconducting parent phasesJournal of Materials Chemistry, 3
C. Rao, B. Raveau (1998)
Colossal magnetoresistance, charge ordering and related properties of manganese oxides
Chao Shi, Xi Zhang, Yingjie Cai, Yefeng Yao, Wen Zhang (2015)
A chemically triggered and thermally switched dielectric constant transition in a metal cyanide based crystal.Angewandte Chemie, 54 21
Aurélien Leguy, J. Frost, Andrew McMahon, V. Sakai, W. Kockelmann, Chunhung Law, Xiaoe Li, F. Foglia, A. Walsh, B. O'Regan, J. Nelson, J. Cabral, Piers Barnes (2015)
The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cellsNature Communications, 6
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
N. Olekhnovich (2005)
Strain of interatomic bonds and multiple-well potential in crystals with perovskite structureCrystallography Reports, 50
Weiqiang Liao, Yi Zhang, Chunli Hu, J. Mao, Heng‐Yun Ye, Peng-Fei Li, Songping Huang, R. Xiong (2015)
A lead-halide perovskite molecular ferroelectric semiconductorNature Communications, 6
Z. Fan, Juanxiu Xiao, K. Sun, Lei Chen, Yating Hu, Jianyong Ouyang, K. Ong, K. Zeng, John Wang (2015)
Ferroelectricity of CH3NH3PbI3 Perovskite.The journal of physical chemistry letters, 6 7
J. Frost, K. Butler, F. Brivio, Christopher Hendon, M. Schilfgaarde, A. Walsh (2014)
Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar CellsNano Letters, 14
A. Glazer (1972)
The classification of tilted octahedra in perovskitesActa Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28
Xin-hua Zhao, Xing‐Cai Huang, Shaoliang Zhang, Dong Shao, Hai-Yan Wei, Xin-Yi Wang (2013)
Cation-dependent magnetic ordering and room-temperature bistability in azido-bridged perovskite-type compounds.Journal of the American Chemical Society, 135 43
D. Mitzi (2007)
Synthesis, Structure, and Properties of Organic‐Inorganic Perovskites and Related Materials
Hongcai Zhou, J. Long, O. Yaghi (2012)
Introduction to metal-organic frameworks.Chemical reviews, 112 2
Youn Kim, Mingjie Liu, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, M. Takata, T. Aida (2015)
Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel.Nature materials, 14 10
P. Jain, N. Dalal, B. Toby, H. Kroto, A. Cheetham (2008)
Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture.Journal of the American Chemical Society, 130 32
Caroline Draznieks, John Newsam, Alan Gorman, Clive Freeman, Gérard Férey (2000)
Voraussage anorganischer Strukturen durch automatisierte Anordnung von Sekundärbausteinen (AASBU-Verfahren)Angewandte Chemie, 112
S. Kazim, M. Nazeeruddin, M. Grätzel, Shahzad Ahmad (2014)
Perovskite as light harvester: a game changer in photovoltaics.Angewandte Chemie, 53 11
Gautam Desiraju (1995)
Supramolekulare Synthone für das Kristall‐Engineering ‐ eine neue organische SyntheseAngewandte Chemie, 107
G. Desiraju (1995)
Supramolecular Synthons in Crystal Engineering—A New Organic SynthesisAngewandte Chemie, 34
G. King, P. Woodward (2010)
Cation ordering in perovskitesJournal of Materials Chemistry, 20
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
S. Woodley, R. Catlow (2008)
Crystal structure prediction from first principles.Nature materials, 7 12
D. Mitzi (2001)
Templating and structural engineering in organic–inorganic perovskitesJournal of The Chemical Society-dalton Transactions
S. Curtarolo, G. Hart, M. Nardelli, N. Mingo, S. Sanvito, O. Levy (2013)
The high-throughput highway to computational materials design.Nature materials, 12 3
Sa Chen, Ran Shang, Keli Hu, Zheming Wang, Song Gao (2014)
[NH2NH3][M(HCOO)3] (M = Mn2+, Zn2+, Co2+ and Mg2+): structural phase transitions, prominent dielectric anomalies and negative thermal expansion, and magnetic orderingInorganic chemistry frontiers, 1
V. Goldschmidt (1926)
Die Gesetze der KrystallochemieNaturwissenschaften, 14
Wen Zhang, Yingjie Cai, R. Xiong, Hirofumi Yoshikawa, K. Awaga (2010)
Exceptional dielectric phase transitions in a perovskite-type cage compound.Angewandte Chemie, 49 37
N. Olekhnovich (2006)
Strain of interatomic bonds and crystallochemical aspects of AB12/′B12/″O3 oxides with perovskite structureCrystallography Reports, 51
G. Kieslich, Shijing Sun, A. Cheetham (2014)
Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dogChemical Science, 5
A. Akbashev, A. Kaul (2011)
Structural and chemical aspects of the design of multiferroic materialsRussian Chemical Reviews, 80
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
S. Peschel, D. Babel (1994)
Zur Kristallstruktur der Cyanoelpasolithe [N(CH3)4]2CsCo(CN)6 und [H3NCH3]2NaFe(CN)6 / Concerning the Crystal Structures of the Cyano-Elpasolites [N(CH3)4]2CsCo(CN)6 and [H3NCH3]2NaFe(CN)6Zeitschrift für Naturforschung B, 49
Sa Chen, Ran Shang, Bingwu Wang, Zheming Wang, Song Gao (2015)
An A-site mixed-ammonium solid solution perovskite series of [(NH2 NH3 )x (CH3 NH3 )1-x ][Mn(HCOO)3 ] (x=1.00-0.67).Angewandte Chemie, 54 38
S. Kazim, Mohammad Nazeeruddin, M. Grätzel, Shahzada Ahmad (2014)
Perowskit als Lichtabsorptionsmaterial: ein Durchbruch in der PhotovoltaikAngewandte Chemie, 126
R. Shannon (1976)
Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenidesActa Crystallographica Section A, 32
Z. Du, Ting-ting Xu, Bo Huang, Yu-Jun Su, Wei Xue, Chun He, Wei-Xiong Zhang, Xiao‐Ming Chen (2015)
Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials.Angewandte Chemie, 54 3
Extended Goldschmidt tolerance factor t is applied to the hybrid double perovskites (MA)2(B′B′′(CN)6) (MA=methylammonium cation) to predict and screen dielectric transitions in 121 compounds through the correlations among t, the radius of the B component rB and the transition temperature Tc, based on experimental results from model compounds. For (MA)2(B′Co(CN)6), it is concluded that: i) when t>0.873, the cubic phase would be stable below 298 K; ii) when 0.873>t>0.805, the cubic phase would be stable between 298 and 523 K; iii) the larger the rB, the higher the Tc of the perovskite (Tc1/2∝rB); and iv) the Tc of the hybrid perovskites can be well tuned by doping the B components.
Angewandte Chemie International Edition – Wiley
Published: May 4, 2016
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.