Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

A Multifunctional Platform for Tumor Angiogenesis-Targeted Chemo-Thermal Therapy Using Polydopamine-Coated Gold Nanorods.

A Multifunctional Platform for Tumor Angiogenesis-Targeted Chemo-Thermal Therapy Using... Image-guided combined chemo-thermal therapy assists in optimizing treatment time, enhancing therapeutic efficiency, and circumventing side effects. In the present study, we developed a chemo-photothermal theranostic platform based on polydopamine (PDA)-coated gold nanorods (GNRs). The PDA coating was thin; however, it significantly suppressed the cytotoxicity of the cetyltrimethylammonium bromide template and allowed high cisplatin loading efficiency, arginine-glycine-aspartic acid (RGD) peptide (c(RGDyC)) conjugation, and chelator-free iodine-125 labeling (RGD-125IPt-PDA@GNRs). While loaded cisplatin was released in a pH-sensitive manner, labeled 125I was outstandingly stable under biological conditions. RGD-125IPt-PDA@GNRs had a high specificity for αvβ3 integrin, and consequently, they could selectively accumulate in tumors, as revealed by single photon emission computed tomography/CT imaging, and in target tumor angiogenic vessels, as shown by high-resolution photoacoustic imaging. As RGD-125IPt-PDA@GNRs targets tumor angiogenesis, it is a highly potent tumor therapy. Combined chemo-photothermal therapy with probes could thoroughly ablate tumors and inhibit tumor relapse via a synergistic antitumor effect. Our studies demonstrated that RGD-125IPt-PDA@GNRs is a robust platform for image-guided, chemo-thermal tumor therapy with outstanding synergistic tumor killing and relapse inhibition effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACS Nano Pubmed

A Multifunctional Platform for Tumor Angiogenesis-Targeted Chemo-Thermal Therapy Using Polydopamine-Coated Gold Nanorods.

A Multifunctional Platform for Tumor Angiogenesis-Targeted Chemo-Thermal Therapy Using Polydopamine-Coated Gold Nanorods.


Abstract

Image-guided combined chemo-thermal therapy assists in optimizing treatment time, enhancing therapeutic efficiency, and circumventing side effects. In the present study, we developed a chemo-photothermal theranostic platform based on polydopamine (PDA)-coated gold nanorods (GNRs). The PDA coating was thin; however, it significantly suppressed the cytotoxicity of the cetyltrimethylammonium bromide template and allowed high cisplatin loading efficiency, arginine-glycine-aspartic acid (RGD) peptide (c(RGDyC)) conjugation, and chelator-free iodine-125 labeling (RGD-125IPt-PDA@GNRs). While loaded cisplatin was released in a pH-sensitive manner, labeled 125I was outstandingly stable under biological conditions. RGD-125IPt-PDA@GNRs had a high specificity for αvβ3 integrin, and consequently, they could selectively accumulate in tumors, as revealed by single photon emission computed tomography/CT imaging, and in target tumor angiogenic vessels, as shown by high-resolution photoacoustic imaging. As RGD-125IPt-PDA@GNRs targets tumor angiogenesis, it is a highly potent tumor therapy. Combined chemo-photothermal therapy with probes could thoroughly ablate tumors and inhibit tumor relapse via a synergistic antitumor effect. Our studies demonstrated that RGD-125IPt-PDA@GNRs is a robust platform for image-guided, chemo-thermal tumor therapy with outstanding synergistic tumor killing and relapse inhibition effects.

Loading next page...
 
/lp/pubmed/a-multifunctional-platform-for-tumor-angiogenesis-targeted-chemo-tfFm0mukuQ

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1936-0851
DOI
10.1021/acsnano.6b06267
pmid
27934087

Abstract

Image-guided combined chemo-thermal therapy assists in optimizing treatment time, enhancing therapeutic efficiency, and circumventing side effects. In the present study, we developed a chemo-photothermal theranostic platform based on polydopamine (PDA)-coated gold nanorods (GNRs). The PDA coating was thin; however, it significantly suppressed the cytotoxicity of the cetyltrimethylammonium bromide template and allowed high cisplatin loading efficiency, arginine-glycine-aspartic acid (RGD) peptide (c(RGDyC)) conjugation, and chelator-free iodine-125 labeling (RGD-125IPt-PDA@GNRs). While loaded cisplatin was released in a pH-sensitive manner, labeled 125I was outstandingly stable under biological conditions. RGD-125IPt-PDA@GNRs had a high specificity for αvβ3 integrin, and consequently, they could selectively accumulate in tumors, as revealed by single photon emission computed tomography/CT imaging, and in target tumor angiogenic vessels, as shown by high-resolution photoacoustic imaging. As RGD-125IPt-PDA@GNRs targets tumor angiogenesis, it is a highly potent tumor therapy. Combined chemo-photothermal therapy with probes could thoroughly ablate tumors and inhibit tumor relapse via a synergistic antitumor effect. Our studies demonstrated that RGD-125IPt-PDA@GNRs is a robust platform for image-guided, chemo-thermal tumor therapy with outstanding synergistic tumor killing and relapse inhibition effects.

Journal

ACS NanoPubmed

Published: Aug 6, 2018

There are no references for this article.